aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--extensions-builtin/Lora/lyco_helpers.py47
-rw-r--r--extensions-builtin/Lora/network_oft.py131
2 files changed, 77 insertions, 101 deletions
diff --git a/extensions-builtin/Lora/lyco_helpers.py b/extensions-builtin/Lora/lyco_helpers.py
index 279b34bc..1679a0ce 100644
--- a/extensions-builtin/Lora/lyco_helpers.py
+++ b/extensions-builtin/Lora/lyco_helpers.py
@@ -19,3 +19,50 @@ def rebuild_cp_decomposition(up, down, mid):
up = up.reshape(up.size(0), -1)
down = down.reshape(down.size(0), -1)
return torch.einsum('n m k l, i n, m j -> i j k l', mid, up, down)
+
+
+# copied from https://github.com/KohakuBlueleaf/LyCORIS/blob/dev/lycoris/modules/lokr.py
+def factorization(dimension: int, factor:int=-1) -> tuple[int, int]:
+ '''
+ return a tuple of two value of input dimension decomposed by the number closest to factor
+ second value is higher or equal than first value.
+
+ In LoRA with Kroneckor Product, first value is a value for weight scale.
+ secon value is a value for weight.
+
+ Becuase of non-commutative property, A⊗B ≠ B⊗A. Meaning of two matrices is slightly different.
+
+ examples)
+ factor
+ -1 2 4 8 16 ...
+ 127 -> 1, 127 127 -> 1, 127 127 -> 1, 127 127 -> 1, 127 127 -> 1, 127
+ 128 -> 8, 16 128 -> 2, 64 128 -> 4, 32 128 -> 8, 16 128 -> 8, 16
+ 250 -> 10, 25 250 -> 2, 125 250 -> 2, 125 250 -> 5, 50 250 -> 10, 25
+ 360 -> 8, 45 360 -> 2, 180 360 -> 4, 90 360 -> 8, 45 360 -> 12, 30
+ 512 -> 16, 32 512 -> 2, 256 512 -> 4, 128 512 -> 8, 64 512 -> 16, 32
+ 1024 -> 32, 32 1024 -> 2, 512 1024 -> 4, 256 1024 -> 8, 128 1024 -> 16, 64
+ '''
+
+ if factor > 0 and (dimension % factor) == 0:
+ m = factor
+ n = dimension // factor
+ if m > n:
+ n, m = m, n
+ return m, n
+ if factor < 0:
+ factor = dimension
+ m, n = 1, dimension
+ length = m + n
+ while m<n:
+ new_m = m + 1
+ while dimension%new_m != 0:
+ new_m += 1
+ new_n = dimension // new_m
+ if new_m + new_n > length or new_m>factor:
+ break
+ else:
+ m, n = new_m, new_n
+ if m > n:
+ n, m = m, n
+ return m, n
+
diff --git a/extensions-builtin/Lora/network_oft.py b/extensions-builtin/Lora/network_oft.py
index 979a2047..2be67fe5 100644
--- a/extensions-builtin/Lora/network_oft.py
+++ b/extensions-builtin/Lora/network_oft.py
@@ -1,7 +1,7 @@
import torch
import network
+from lyco_helpers import factorization
from einops import rearrange
-from modules import devices
class ModuleTypeOFT(network.ModuleType):
@@ -11,7 +11,8 @@ class ModuleTypeOFT(network.ModuleType):
return None
-# adapted from kohya's implementation https://github.com/kohya-ss/sd-scripts/blob/main/networks/oft.py
+# adapted from kohya-ss' implementation https://github.com/kohya-ss/sd-scripts/blob/main/networks/oft.py
+# and KohakuBlueleaf's implementation https://github.com/KohakuBlueleaf/LyCORIS/blob/dev/lycoris/modules/diag_oft.py
class NetworkModuleOFT(network.NetworkModule):
def __init__(self, net: network.Network, weights: network.NetworkWeights):
@@ -19,6 +20,7 @@ class NetworkModuleOFT(network.NetworkModule):
self.lin_module = None
self.org_module: list[torch.Module] = [self.sd_module]
+
# kohya-ss
if "oft_blocks" in weights.w.keys():
self.is_kohya = True
@@ -37,61 +39,31 @@ class NetworkModuleOFT(network.NetworkModule):
is_linear = type(self.sd_module) in [torch.nn.Linear, torch.nn.modules.linear.NonDynamicallyQuantizableLinear]
is_conv = type(self.sd_module) in [torch.nn.Conv2d]
- is_other_linear = type(self.sd_module) in [ torch.nn.MultiheadAttention]
- #if "Linear" in self.sd_module.__class__.__name__ or is_linear:
+ is_other_linear = type(self.sd_module) in [torch.nn.MultiheadAttention]
+
if is_linear:
self.out_dim = self.sd_module.out_features
- #elif hasattr(self.sd_module, "embed_dim"):
- # self.out_dim = self.sd_module.embed_dim
- #else:
- # raise ValueError("Linear sd_module must have out_features or embed_dim")
elif is_other_linear:
self.out_dim = self.sd_module.embed_dim
- #self.org_weight = self.org_module[0].weight
-# if hasattr(self.sd_module, "in_proj_weight"):
-# self.in_proj_dim = self.sd_module.in_proj_weight.shape[1]
-# if hasattr(self.sd_module, "out_proj_weight"):
-# self.out_proj_dim = self.sd_module.out_proj_weight.shape[0]
-# self.in_proj_dim = self.sd_module.in_proj_weight.shape[1]
elif is_conv:
self.out_dim = self.sd_module.out_channels
else:
raise ValueError("sd_module must be Linear or Conv")
-
if self.is_kohya:
self.num_blocks = self.dim
self.block_size = self.out_dim // self.num_blocks
self.constraint = self.alpha * self.out_dim
- #elif is_linear or is_conv:
else:
self.block_size, self.num_blocks = factorization(self.out_dim, self.dim)
self.constraint = None
-
- # if is_other_linear:
- # weight = self.oft_blocks.reshape(self.oft_blocks.shape[0], -1)
- # module = torch.nn.Linear(weight.shape[1], weight.shape[0], bias=False)
- # with torch.no_grad():
- # if weight.shape != module.weight.shape:
- # weight = weight.reshape(module.weight.shape)
- # module.weight.copy_(weight)
- # module.to(device=devices.cpu, dtype=devices.dtype)
- # module.weight.requires_grad_(False)
- # self.lin_module = module
- #return module
-
def merge_weight(self, R_weight, org_weight):
R_weight = R_weight.to(org_weight.device, dtype=org_weight.dtype)
if org_weight.dim() == 4:
weight = torch.einsum("oihw, op -> pihw", org_weight, R_weight)
else:
weight = torch.einsum("oi, op -> pi", org_weight, R_weight)
- #weight = torch.einsum(
- # "k n m, k n ... -> k m ...",
- # self.oft_diag * scale + torch.eye(self.block_size, device=device),
- # org_weight
- #)
return weight
def get_weight(self, oft_blocks, multiplier=None):
@@ -111,48 +83,51 @@ class NetworkModuleOFT(network.NetworkModule):
block_R_weighted = multiplier * block_R + (1 - multiplier) * m_I
R = torch.block_diag(*block_R_weighted)
return R
- #return self.oft_blocks
+ def calc_updown_kohya(self, orig_weight, multiplier):
+ R = self.get_weight(self.oft_blocks, multiplier)
+ merged_weight = self.merge_weight(R, orig_weight)
- def calc_updown(self, orig_weight):
- multiplier = self.multiplier() * self.calc_scale()
- is_other_linear = type(self.sd_module) in [ torch.nn.MultiheadAttention]
- if self.is_kohya and not is_other_linear:
- R = self.get_weight(self.oft_blocks, multiplier)
- #R = self.oft_blocks.to(orig_weight.device, dtype=orig_weight.dtype)
- merged_weight = self.merge_weight(R, orig_weight)
- elif not self.is_kohya and not is_other_linear:
+ updown = merged_weight.to(orig_weight.device, dtype=orig_weight.dtype) - orig_weight
+ output_shape = orig_weight.shape
+ orig_weight = orig_weight
+ return self.finalize_updown(updown, orig_weight, output_shape)
+
+ def calc_updown_kb(self, orig_weight, multiplier):
+ is_other_linear = type(self.sd_module) in [torch.nn.MultiheadAttention]
+
+ if not is_other_linear:
if is_other_linear and orig_weight.shape[0] != orig_weight.shape[1]:
orig_weight=orig_weight.permute(1, 0)
+
R = self.oft_blocks.to(orig_weight.device, dtype=orig_weight.dtype)
merged_weight = rearrange(orig_weight, '(k n) ... -> k n ...', k=self.num_blocks, n=self.block_size)
- #orig_weight = rearrange(orig_weight, '(k n) ... -> k n ...', k=self.block_size, n=self.num_blocks)
merged_weight = torch.einsum(
'k n m, k n ... -> k m ...',
R * multiplier + torch.eye(self.block_size, device=orig_weight.device),
- merged_weight
+ merged_weight
)
merged_weight = rearrange(merged_weight, 'k m ... -> (k m) ...')
+
if is_other_linear and orig_weight.shape[0] != orig_weight.shape[1]:
orig_weight=orig_weight.permute(1, 0)
- #merged_weight=merged_weight.permute(1, 0)
+
updown = merged_weight.to(orig_weight.device, dtype=orig_weight.dtype) - orig_weight
- #updown = weight.to(orig_weight.device, dtype=orig_weight.dtype) - orig_weight
output_shape = orig_weight.shape
else:
- # skip for now
+ # FIXME: skip MultiheadAttention for now
updown = torch.zeros([orig_weight.shape[1], orig_weight.shape[1]], device=orig_weight.device, dtype=orig_weight.dtype)
output_shape = (orig_weight.shape[1], orig_weight.shape[1])
- #if self.lin_module is not None:
- # R = self.lin_module.weight.to(orig_weight.device, dtype=orig_weight.dtype)
- # weight = torch.mul(torch.mul(R, multiplier), orig_weight)
- #else:
-
- orig_weight = orig_weight
-
return self.finalize_updown(updown, orig_weight, output_shape)
+ def calc_updown(self, orig_weight):
+ multiplier = self.multiplier() * self.calc_scale()
+ if self.is_kohya:
+ return self.calc_updown_kohya(orig_weight, multiplier)
+ else:
+ return self.calc_updown_kb(orig_weight, multiplier)
+
# override to remove the multiplier/scale factor; it's already multiplied in get_weight
def finalize_updown(self, updown, orig_weight, output_shape, ex_bias=None):
#return super().finalize_updown(updown, orig_weight, output_shape, ex_bias)
@@ -172,49 +147,3 @@ class NetworkModuleOFT(network.NetworkModule):
ex_bias = ex_bias * self.multiplier()
return updown, ex_bias
-
-# copied from https://github.com/KohakuBlueleaf/LyCORIS/blob/dev/lycoris/modules/lokr.py
-def factorization(dimension: int, factor:int=-1) -> tuple[int, int]:
- '''
- return a tuple of two value of input dimension decomposed by the number closest to factor
- second value is higher or equal than first value.
-
- In LoRA with Kroneckor Product, first value is a value for weight scale.
- secon value is a value for weight.
-
- Becuase of non-commutative property, A⊗B ≠ B⊗A. Meaning of two matrices is slightly different.
-
- examples)
- factor
- -1 2 4 8 16 ...
- 127 -> 1, 127 127 -> 1, 127 127 -> 1, 127 127 -> 1, 127 127 -> 1, 127
- 128 -> 8, 16 128 -> 2, 64 128 -> 4, 32 128 -> 8, 16 128 -> 8, 16
- 250 -> 10, 25 250 -> 2, 125 250 -> 2, 125 250 -> 5, 50 250 -> 10, 25
- 360 -> 8, 45 360 -> 2, 180 360 -> 4, 90 360 -> 8, 45 360 -> 12, 30
- 512 -> 16, 32 512 -> 2, 256 512 -> 4, 128 512 -> 8, 64 512 -> 16, 32
- 1024 -> 32, 32 1024 -> 2, 512 1024 -> 4, 256 1024 -> 8, 128 1024 -> 16, 64
- '''
-
- if factor > 0 and (dimension % factor) == 0:
- m = factor
- n = dimension // factor
- if m > n:
- n, m = m, n
- return m, n
- if factor < 0:
- factor = dimension
- m, n = 1, dimension
- length = m + n
- while m<n:
- new_m = m + 1
- while dimension%new_m != 0:
- new_m += 1
- new_n = dimension // new_m
- if new_m + new_n > length or new_m>factor:
- break
- else:
- m, n = new_m, new_n
- if m > n:
- n, m = m, n
- return m, n
-