summaryrefslogtreecommitdiff
path: root/Presentation/presentation.tex
blob: eb7eae8d3d9207cbb9a4bcb7fbf2cf6d6c10ce93 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
% Offizielle Beispieldatei für beamer-Vorlage aus tubslatex Version 0.3beta2
\documentclass[fleqn,11pt,aspectratio=43]{beamer}

\usepackage[english]{babel}
\usepackage[utf8]{inputenc}
\usepackage{graphicx}
\usepackage{svg}
\usepackage[
backend=biber,
%style=alphabetic,
%sorting=ynt
]{biblatex}
\addbibresource{../Presentation/references.bib}
\usetheme[%
  %nexus,%        Nexus Fonts benutzen
  %lnum,%         Versalziffern verwenden
  %cmyk,%<rgbprint>,          Auswahl des Farbmodells
  blue,%<orange/green/violet> Auswahl des Sekundärfarbklangs
  dark,%<light,medium>        Auswahl der Helligkeit
  %colorhead,%    Farbig hinterlegte Kopfleiste
  %colorfoot,%    Farbig hinterlegt Fußleiste auf Titelseite
  colorblocks,%   Blöcke Farbig hinterlegen
  %nopagenum,%    Keine Seitennumer in Fußzeile
  %nodate,%       Kein Datum in Fußleiste
  tocinheader,%   Inhaltsverzeichnis in Kopfleiste
  %tinytocinheader,% kleines Kopfleisten-Inhaltsverzeichnis
  %widetoc,%      breites Kopfleisten-Inhaltsverzeichnis
  %narrowtoc,%    schmales Kopfleisten-Inhaltsverzeichnis
  %nosubsectionsinheader,%  Keine subsections im Kopfleisten-Inhaltsverzeichnis
  %nologoinfoot,% Kein Logo im Fußbereich darstellen
  ]{tubs}

% Titelseite
\title{EIE: Efficient Inference Engine on Compressed Deep Neural Network}
%\subtitle{Das Corporate Design in  \LaTeX}
\author{Leonard Kugis}
% Titelgrafik, automatisch beschnitten, Weitere Optionen: <scaled/cropx/cropy>
% \titlegraphic[cropped]{\includegraphics{infozentrum.jpg}}
%\titlegraphic[scaled]{\includegraphics{titlepicture.jpg}}

% Logo, dass auf Titelseiten oben rechts und auf Inthaltsseiten unten rechts
% dargestellt wird. Es wird jeweils automatisch skliert
%\logo{\includegraphics{dummy_institut.pdf}}
%\logo{Institut für Unkreativität\\und Schreibschwäche}

\begin{document}

\nocite{*}
\renewcommand*{\bibfont}{\scriptsize}

\begin{frame}[plain]
\titlepage
\end{frame}

\begin{frame}{Table of contents}
    \tableofcontents
\end{frame}

\section{Deep Neural Networks}

\begin{frame}{Table of contents}
  \tableofcontents[currentsection]
\end{frame}

\begin{frame}
  \begin{figure}[h]
    \centering
    \includegraphics[width=\textwidth, keepaspectratio]{resources/cnn}
    \caption{Deep Neural Network \cite{726791}}
  \end{figure}
\end{frame}

\begin{frame}
  \begin{figure}[h]
    \centering
    \includegraphics[width=\textwidth, keepaspectratio]{resources/fcn}
    \caption{Fully connected layer}
  \end{figure}
\end{frame}

\begin{frame}
  \begin{figure}[h]
    \centering
    \includegraphics[width=\textwidth, keepaspectratio]{resources/fcn}
    \caption{Fully connected layer}
  \end{figure}
  \begin{itemize}
    \item $b_i = f(\sum\limits_{j=0}^{n} W_{ij} a_j)$
    \item Multiply-Accumulate (MAC) operations
    \item Matrix $W$ can be sparse
  \end{itemize}
\end{frame}

\section{Motivation}

\begin{frame}{Table of contents}
  \tableofcontents[currentsection]
\end{frame}

\begin{frame}{Inference metrics}
  \begin{itemize}
    \item Throughput \\
      \textcolor{gray}{Amount of data processed during one unit of time}
    \item Latency \\
      \textcolor{gray}{Amount of time it takes to process a single workload}
    \item Model size \\
      \textcolor{gray}{Storage amount to store the model (e.g. weights)}
    \item Energy use \\
      \textcolor{gray}{Energy consumption for processing a specific amount of data}
  \end{itemize}
\end{frame}

\begin{frame}{Memory access}
  \begin{figure}[h]
    \centering
    \includegraphics[width=0.9\textwidth, keepaspectratio]{resources/memory_latency}
    \caption{Memory hierarchy and energy cost of hierarchy levels \cite{DBLP:journals/corr/SzeCESZ16}}
  \end{figure}
\end{frame}

\begin{frame}{Memory access}
  \begin{figure}[h]
    \centering
    \includegraphics[width=0.6\textwidth, keepaspectratio]{resources/dnn_dataflows_png}
    \caption{Common dataflow models in inference architectures \cite{DBLP:journals/corr/SzeCESZ16}}
  \end{figure}
\end{frame}

\begin{frame}{Memory access}
  \begin{figure}[h]
    \centering
    \includegraphics[width=0.6\textwidth, keepaspectratio]{resources/dnn_dataflows_access_png}
    \caption{Common dataflow models in inference architectures (based on \cite{DBLP:journals/corr/SzeCESZ16})}
  \end{figure}
\end{frame}

\section{Compression}

\begin{frame}{Table of contents}
  \tableofcontents[currentsection]
\end{frame}

\begin{frame}
  \begin{itemize}
    \item Dynamic
    \begin{itemize}
      \item Input data
    \end{itemize}
    \item Static (parameters)
    \begin{itemize}
      \item Weights
      \item Parameters of activation functions
    \end{itemize}
  \end{itemize}
\end{frame}

\begin{frame}{AlexNet}
  \begin{itemize}
    \item 5 convolutional layers
    \item 3 fully connected layers
    \item $\sim 62$ million parameters
    \item $\sim 240$ MB with 32-bit float representation
  \end{itemize}
\end{frame}

\begin{frame}{Basis projection}
  \begin{figure}[h]
    \centering
    \includegraphics[width=0.75\textwidth, keepaspectratio]{resources/basis_projection_png}
    \caption{Basis projection and resulting weight distribution \cite{DBLP:journals/corr/SuleimanZS16}}
  \end{figure}
\end{frame}

\begin{frame}{Pruning}
  \begin{itemize}
    \item Idea: Remove unimportant weights with low impact on accuracy
  \end{itemize}
  \begin{figure}[h]
    \centering
    \vspace{0.5cm}
    \includegraphics[width=0.3\textwidth, keepaspectratio]{resources/pruning}
    \caption{3-step pruning working principle (based on \cite{NIPS2015_ae0eb3ee})}
  \end{figure}
\end{frame}

\begin{frame}{Pruning}
  \begin{minipage}{0.24\linewidth}
    \begin{figure}[h]
      \centering
      \includegraphics[width=\textwidth, keepaspectratio]{resources/pruning}
    \end{figure}
  \end{minipage}
  \hfill
  \begin{minipage}{0.74\linewidth}
    \begin{itemize}
      \item Magnitude threshold based pruning
      \begin{itemize}
        \item Remove a weight, if value is below specific threshold
      \end{itemize}
      \item Optimal Brain Damage $(a)$ \& Optimal Brain Surgeon $(b)$
      \begin{itemize}
        \item Removes weights based on sensitivity on objective function
        \item Considers first $(a)$ and second order derivatives $(b)$ to measure sensitivity
        \item Remove lowest sensitive weights first
      \end{itemize}
      \item Biased weight decay
      \begin{itemize}
        \item Update-Time pruning
        \item Adjust weight update term so, that large weights persist and small weights converge to zero 
      \end{itemize}
    \end{itemize}
  \end{minipage}
\end{frame}

\begin{frame}{Weight quantization}
  \begin{figure}[h]
    \centering
    \includegraphics[width=0.5\textwidth, keepaspectratio]{resources/clustering}
    \caption{Weight quantization \cite{Han2015DeepCC}}
  \end{figure}
  \begin{itemize}
    \item Group similar weights into clusters
    \item Fine tune clusters with gradient matrix during update
  \end{itemize}
\end{frame}

\begin{frame}{Weight quantization}
  \begin{itemize}
    \item Minimalize Within-Cluster Sum of Squares (WCSS): $\text{argmin}_C \sum\limits_{i=1}^{k} \sum\limits_{\omega \in c_i} | \omega - c_i |^2$
    \item Perform k-means clustering:
    \begin{enumerate}
      \item Initialize $k$ cluster centroids
      \item For all weights:
      \begin{enumerate}
        \item Assign weight to the cluster with nearest centroid
        \item Recalculate cluster centroids
      \end{enumerate}
    \end{enumerate}
  \end{itemize}
\end{frame}

\begin{frame}{Weight quantization}
  \begin{figure}[h]
    \centering
    \includegraphics[width=0.8\textwidth, keepaspectratio]{resources/centroid_initialization}
    \caption{Different centroid initialization methods \cite{Han2015DeepCC}}
  \end{figure}
\end{frame}

\begin{frame}{Huffman encoding}
  \begin{figure}[h]
    \centering
    \includegraphics[width=0.7\textwidth, keepaspectratio]{resources/huffman}
    \caption{Huffman encoding example}
  \end{figure}
\end{frame}

\begin{frame}{HashNets}
  \begin{figure}[h]
    \centering
    \includegraphics[width=0.7\textwidth, keepaspectratio]{resources/hashnets}
    \caption{HashNets encoding (based on \cite{10.5555/3045118.3045361})}
  \end{figure}
\end{frame}

\begin{frame}{HashNets}
  \begin{minipage}{0.49\linewidth}
    \begin{figure}[h]
      \centering
      \includegraphics[width=\textwidth, keepaspectratio]{resources/hashnets}
    \end{figure}
  \end{minipage}
  \hfill
  \begin{minipage}{0.49\linewidth}
    \begin{itemize}
      \item Virtual weight matrix $\textbf{V}^{\ell}$
      \item One-way hash function $h^{\ell}(i, j)$
      \item Weight array $w^{\ell}$
      \item Hash function returns index for weight array
      \item $w^{\ell}_{h^{\ell}(i, j)} = \textbf{V}^{\ell}_{ij}$
    \end{itemize}
  \end{minipage}
\end{frame}

\begin{frame}{Storage format}
  \begin{itemize}
    \item Compressed sparse column (CSC) /
      Compressed sparse row (CSR) representation
    \item Encode each column $W_j$ as vectors $v$ and $z$
    \begin{itemize}
      \item $v$: Non-zero weights
      \item $z$: Number of zeros before corresponding element in $v$
    \end{itemize}
  \end{itemize}
  \begin{itemize}
    \item E.g. column $[0, 0, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3]$ becomes
      $v = [1, 2, 0, 3]$, $z = [2, 0, 15, 2]$
    \item $v$'s and $z$'s for all columns are stored in a single pair of arrays
    \item Vector $p$ with $p_j$ pointing to the first element of column $W_j$
  \end{itemize}
\end{frame}

\section{EIE implementation}

\begin{frame}{Table of contents}
  \tableofcontents[currentsection]
\end{frame}

\begin{frame}{EIE implementation}
  \begin{itemize}
    \item Optimizes per-activation formula:
    \begin{align}
      b_i = f(\sum\limits_{j=0}^{n-1} W_{ij} a_j) \overset{!}{=} \text{ReLU}(\sum\limits_{j \in X_i \cap Y} S[I_{ij}] a_j)
    \end{align}
    \item $X_i$: Set of columns, skipping $W_{ij} = 0$
    \item $Y$: Set of indices in $a$ for which $a_j \neq 0$
    \item $I_{ij}$: 4-bit index
    \item $S$: Shared lookup table
  \end{itemize}
\end{frame}

\begin{frame}{Weight matrix segmentation}
  \begin{figure}[h]
    \centering
    \includegraphics[width=0.52\textwidth, keepaspectratio]{resources/eie_matrix}
    \includegraphics[width=0.52\textwidth, keepaspectratio]{resources/eie_layout}
    \caption{Weight matrix segmentation and memory layout \cite{10.1109/ISCA.2016.30}}
  \end{figure}
\end{frame}

\begin{frame}{Hardware implementation}
  \begin{figure}[h]
    \centering
    \includegraphics[width=\textwidth, keepaspectratio]{resources/eie_hw}
    \caption{Hardware architecture \cite{10.1109/ISCA.2016.30}}
  \end{figure}
\end{frame}

\begin{frame}{Hardware implementation}
  \begin{minipage}{0.39\linewidth}
    \begin{figure}[h]
      \centering
      \includegraphics[width=\textwidth, keepaspectratio]{resources/eie_hw_zero}
      \caption{Non-Zero detection node (based on \cite{10.1109/ISCA.2016.30})}
    \end{figure}
  \end{minipage}
  \hfill
  \begin{minipage}{0.59\linewidth}
    \begin{itemize}
      \item Filter zero elements in input vector $a$
      \item Broadcast non-zero elements $a_j$ and corresponding indices $j$ to all PEs
    \end{itemize}
  \end{minipage}
\end{frame}

\begin{frame}{Hardware implementation}
  \begin{minipage}{0.39\linewidth}
    \begin{figure}[h]
      \centering
      \includegraphics[width=\textwidth, keepaspectratio]{resources/eie_hw_pointer}
      \caption{Pointer read unit (based on \cite{10.1109/ISCA.2016.30})}
    \end{figure}
  \end{minipage}
  \hfill
  \begin{minipage}{0.59\linewidth}
    \begin{itemize}
      \item Pointers to columns $W_j$ are stored alternating in seperate SRAM banks
      \item Start- and end-pointers are read out simultaneously
    \end{itemize}
  \end{minipage}
\end{frame}

\begin{frame}{Hardware implementation}
  \begin{minipage}{0.39\linewidth}
    \begin{figure}[h]
      \centering
      \includegraphics[width=\textwidth, keepaspectratio]{resources/eie_hw_matrix}
      \caption{Sparse matrix read unit (based on \cite{10.1109/ISCA.2016.30})}
    \end{figure}
  \end{minipage}
  \hfill
  \begin{minipage}{0.59\linewidth}
    \begin{itemize}
      \item Reads weight values $v$ and zeroes $z$ for current operation based on pointers
      \item SRAM word length: 64 bit, entries of $v$ and $z$ are 4 bit each \\
        $\rightarrow$ 8 entries per word
    \end{itemize}
  \end{minipage}
\end{frame}

\begin{frame}{Hardware implementation}
  \begin{minipage}{0.39\linewidth}
    \begin{figure}[h]
      \centering
      \includegraphics[width=\textwidth, keepaspectratio]{resources/eie_hw_alu}
      \caption{Arithmetic unit (based on \cite{10.1109/ISCA.2016.30})}
    \end{figure}
  \end{minipage}
  \hfill
  \begin{minipage}{0.59\linewidth}
    \begin{itemize}
      \item Receives column vector $v$, absolute destination accumulator register index $x$ and activation value $a_j$
      \item Calculates $b_x = b_x + v \cdot a_j$
      \item Accumulates indices $x$ and forwards real target address 
    \end{itemize}
  \end{minipage}
\end{frame}

\begin{frame}{Hardware implementation}
  \begin{minipage}{0.29\linewidth}
    \begin{figure}[h]
      \centering
      \includegraphics[width=\textwidth, keepaspectratio]{resources/eie_hw_rw}
      \caption{Read/Write unit (based on \cite{10.1109/ISCA.2016.30})}
    \end{figure}
  \end{minipage}
  \hfill
  \begin{minipage}{0.69\linewidth}
    \begin{itemize}
      \item Maintains source ($a$) and destination ($b$) activation values
      \item Feed-Forward-Network: destination values of one layer are activation values of next layer
      \item Register banks exchange roles on each layer
    \end{itemize}
  \end{minipage}
\end{frame}

\begin{frame}{Hardware implementation}
  \begin{minipage}{0.24\linewidth}
    \begin{figure}[h]
      \centering
      \includegraphics[width=\textwidth, keepaspectratio]{resources/eie_hw_lnzd}
      \caption{ReLU \& Leading non-zero detection unit (based on \cite{10.1109/ISCA.2016.30})}
    \end{figure}
  \end{minipage}
  \hfill
  \begin{minipage}{0.74\linewidth}
    \begin{itemize}
      \item Performs ReLU function on destination values
      \item Detects first PE-local non-zero destination value
      \item Sends it to group Leading non-zero detection unit to distribute it to PEs for next cycle
    \end{itemize}
  \end{minipage}
\end{frame}

\section{Evaluation}

\begin{frame}{Table of contents}
  \tableofcontents[currentsection]
\end{frame}

\begin{frame}{Speed and energy}
  \begin{figure}[h]
    \centering
    \includegraphics[width=\textwidth, keepaspectratio]{resources/eval_speed_png}\\
    \vspace{0.5cm}
    \includegraphics[width=\textwidth, keepaspectratio]{resources/eval_energy_png}
    \caption{Speedup and energy efficienty comparison \cite{10.1109/ISCA.2016.30}}
  \end{figure}
  \begin{itemize}
    \item Throughput: 102 GOP/s compressed $\rightarrow$ 3 TOP/s uncompressed
  \end{itemize}
\end{frame}

\begin{frame}{Accelerator comparison}
  \begin{figure}[h]
    \centering
    \includegraphics[width=\textwidth, keepaspectratio]{resources/accelerators_table}
    \caption{EIE compared with different DNN hardware accelerators \cite{10.1109/ISCA.2016.30}}
  \end{figure}
\end{frame}

\section{Future work}

\begin{frame}{Table of contents}
  \tableofcontents[currentsection]
\end{frame}

\begin{frame}{Inference accelerators}
  \begin{itemize}
    \item Exploitation of different compression methods
    \begin{itemize}
      \item Huffman encoding (35-49x compression)
      \item HashNets (variable compression up to 64x)
    \end{itemize}
    \item Combination with other optimization methods
    \begin{itemize}
      \item In-Memory computation
      \item Approximating circuits
    \end{itemize}
    \item Optimize hardware itself
    \begin{itemize}
      \item Different storage technologies (e.g. Memristors)
    \end{itemize}
  \end{itemize}
\end{frame}

\begin{frame}[allowframebreaks]{References}
  \printbibliography
\end{frame}

\end{document}