aboutsummaryrefslogtreecommitdiff
path: root/modules/scunet_model_arch.py
diff options
context:
space:
mode:
authorAUTOMATIC1111 <16777216c@gmail.com>2022-10-02 21:33:22 +0300
committerGitHub <noreply@github.com>2022-10-02 21:33:22 +0300
commit688c4a914a6cb152b5f5e4088bace709ed3dcc35 (patch)
tree39c3221e99ca90b7238057bc555c5b4d63fcf960 /modules/scunet_model_arch.py
parenta634c3226fd69486ce96df56f95f3fd63172305c (diff)
parent852fd90c0dcda9cb5fbbfdf0c7308ce58034935c (diff)
Merge branch 'master' into 1404-script-reload-without-restart
Diffstat (limited to 'modules/scunet_model_arch.py')
-rw-r--r--modules/scunet_model_arch.py265
1 files changed, 265 insertions, 0 deletions
diff --git a/modules/scunet_model_arch.py b/modules/scunet_model_arch.py
new file mode 100644
index 00000000..972a2639
--- /dev/null
+++ b/modules/scunet_model_arch.py
@@ -0,0 +1,265 @@
+# -*- coding: utf-8 -*-
+import numpy as np
+import torch
+import torch.nn as nn
+from einops import rearrange
+from einops.layers.torch import Rearrange
+from timm.models.layers import trunc_normal_, DropPath
+
+
+class WMSA(nn.Module):
+ """ Self-attention module in Swin Transformer
+ """
+
+ def __init__(self, input_dim, output_dim, head_dim, window_size, type):
+ super(WMSA, self).__init__()
+ self.input_dim = input_dim
+ self.output_dim = output_dim
+ self.head_dim = head_dim
+ self.scale = self.head_dim ** -0.5
+ self.n_heads = input_dim // head_dim
+ self.window_size = window_size
+ self.type = type
+ self.embedding_layer = nn.Linear(self.input_dim, 3 * self.input_dim, bias=True)
+
+ self.relative_position_params = nn.Parameter(
+ torch.zeros((2 * window_size - 1) * (2 * window_size - 1), self.n_heads))
+
+ self.linear = nn.Linear(self.input_dim, self.output_dim)
+
+ trunc_normal_(self.relative_position_params, std=.02)
+ self.relative_position_params = torch.nn.Parameter(
+ self.relative_position_params.view(2 * window_size - 1, 2 * window_size - 1, self.n_heads).transpose(1,
+ 2).transpose(
+ 0, 1))
+
+ def generate_mask(self, h, w, p, shift):
+ """ generating the mask of SW-MSA
+ Args:
+ shift: shift parameters in CyclicShift.
+ Returns:
+ attn_mask: should be (1 1 w p p),
+ """
+ # supporting sqaure.
+ attn_mask = torch.zeros(h, w, p, p, p, p, dtype=torch.bool, device=self.relative_position_params.device)
+ if self.type == 'W':
+ return attn_mask
+
+ s = p - shift
+ attn_mask[-1, :, :s, :, s:, :] = True
+ attn_mask[-1, :, s:, :, :s, :] = True
+ attn_mask[:, -1, :, :s, :, s:] = True
+ attn_mask[:, -1, :, s:, :, :s] = True
+ attn_mask = rearrange(attn_mask, 'w1 w2 p1 p2 p3 p4 -> 1 1 (w1 w2) (p1 p2) (p3 p4)')
+ return attn_mask
+
+ def forward(self, x):
+ """ Forward pass of Window Multi-head Self-attention module.
+ Args:
+ x: input tensor with shape of [b h w c];
+ attn_mask: attention mask, fill -inf where the value is True;
+ Returns:
+ output: tensor shape [b h w c]
+ """
+ if self.type != 'W': x = torch.roll(x, shifts=(-(self.window_size // 2), -(self.window_size // 2)), dims=(1, 2))
+ x = rearrange(x, 'b (w1 p1) (w2 p2) c -> b w1 w2 p1 p2 c', p1=self.window_size, p2=self.window_size)
+ h_windows = x.size(1)
+ w_windows = x.size(2)
+ # sqaure validation
+ # assert h_windows == w_windows
+
+ x = rearrange(x, 'b w1 w2 p1 p2 c -> b (w1 w2) (p1 p2) c', p1=self.window_size, p2=self.window_size)
+ qkv = self.embedding_layer(x)
+ q, k, v = rearrange(qkv, 'b nw np (threeh c) -> threeh b nw np c', c=self.head_dim).chunk(3, dim=0)
+ sim = torch.einsum('hbwpc,hbwqc->hbwpq', q, k) * self.scale
+ # Adding learnable relative embedding
+ sim = sim + rearrange(self.relative_embedding(), 'h p q -> h 1 1 p q')
+ # Using Attn Mask to distinguish different subwindows.
+ if self.type != 'W':
+ attn_mask = self.generate_mask(h_windows, w_windows, self.window_size, shift=self.window_size // 2)
+ sim = sim.masked_fill_(attn_mask, float("-inf"))
+
+ probs = nn.functional.softmax(sim, dim=-1)
+ output = torch.einsum('hbwij,hbwjc->hbwic', probs, v)
+ output = rearrange(output, 'h b w p c -> b w p (h c)')
+ output = self.linear(output)
+ output = rearrange(output, 'b (w1 w2) (p1 p2) c -> b (w1 p1) (w2 p2) c', w1=h_windows, p1=self.window_size)
+
+ if self.type != 'W': output = torch.roll(output, shifts=(self.window_size // 2, self.window_size // 2),
+ dims=(1, 2))
+ return output
+
+ def relative_embedding(self):
+ cord = torch.tensor(np.array([[i, j] for i in range(self.window_size) for j in range(self.window_size)]))
+ relation = cord[:, None, :] - cord[None, :, :] + self.window_size - 1
+ # negative is allowed
+ return self.relative_position_params[:, relation[:, :, 0].long(), relation[:, :, 1].long()]
+
+
+class Block(nn.Module):
+ def __init__(self, input_dim, output_dim, head_dim, window_size, drop_path, type='W', input_resolution=None):
+ """ SwinTransformer Block
+ """
+ super(Block, self).__init__()
+ self.input_dim = input_dim
+ self.output_dim = output_dim
+ assert type in ['W', 'SW']
+ self.type = type
+ if input_resolution <= window_size:
+ self.type = 'W'
+
+ self.ln1 = nn.LayerNorm(input_dim)
+ self.msa = WMSA(input_dim, input_dim, head_dim, window_size, self.type)
+ self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
+ self.ln2 = nn.LayerNorm(input_dim)
+ self.mlp = nn.Sequential(
+ nn.Linear(input_dim, 4 * input_dim),
+ nn.GELU(),
+ nn.Linear(4 * input_dim, output_dim),
+ )
+
+ def forward(self, x):
+ x = x + self.drop_path(self.msa(self.ln1(x)))
+ x = x + self.drop_path(self.mlp(self.ln2(x)))
+ return x
+
+
+class ConvTransBlock(nn.Module):
+ def __init__(self, conv_dim, trans_dim, head_dim, window_size, drop_path, type='W', input_resolution=None):
+ """ SwinTransformer and Conv Block
+ """
+ super(ConvTransBlock, self).__init__()
+ self.conv_dim = conv_dim
+ self.trans_dim = trans_dim
+ self.head_dim = head_dim
+ self.window_size = window_size
+ self.drop_path = drop_path
+ self.type = type
+ self.input_resolution = input_resolution
+
+ assert self.type in ['W', 'SW']
+ if self.input_resolution <= self.window_size:
+ self.type = 'W'
+
+ self.trans_block = Block(self.trans_dim, self.trans_dim, self.head_dim, self.window_size, self.drop_path,
+ self.type, self.input_resolution)
+ self.conv1_1 = nn.Conv2d(self.conv_dim + self.trans_dim, self.conv_dim + self.trans_dim, 1, 1, 0, bias=True)
+ self.conv1_2 = nn.Conv2d(self.conv_dim + self.trans_dim, self.conv_dim + self.trans_dim, 1, 1, 0, bias=True)
+
+ self.conv_block = nn.Sequential(
+ nn.Conv2d(self.conv_dim, self.conv_dim, 3, 1, 1, bias=False),
+ nn.ReLU(True),
+ nn.Conv2d(self.conv_dim, self.conv_dim, 3, 1, 1, bias=False)
+ )
+
+ def forward(self, x):
+ conv_x, trans_x = torch.split(self.conv1_1(x), (self.conv_dim, self.trans_dim), dim=1)
+ conv_x = self.conv_block(conv_x) + conv_x
+ trans_x = Rearrange('b c h w -> b h w c')(trans_x)
+ trans_x = self.trans_block(trans_x)
+ trans_x = Rearrange('b h w c -> b c h w')(trans_x)
+ res = self.conv1_2(torch.cat((conv_x, trans_x), dim=1))
+ x = x + res
+
+ return x
+
+
+class SCUNet(nn.Module):
+ # def __init__(self, in_nc=3, config=[2, 2, 2, 2, 2, 2, 2], dim=64, drop_path_rate=0.0, input_resolution=256):
+ def __init__(self, in_nc=3, config=None, dim=64, drop_path_rate=0.0, input_resolution=256):
+ super(SCUNet, self).__init__()
+ if config is None:
+ config = [2, 2, 2, 2, 2, 2, 2]
+ self.config = config
+ self.dim = dim
+ self.head_dim = 32
+ self.window_size = 8
+
+ # drop path rate for each layer
+ dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(config))]
+
+ self.m_head = [nn.Conv2d(in_nc, dim, 3, 1, 1, bias=False)]
+
+ begin = 0
+ self.m_down1 = [ConvTransBlock(dim // 2, dim // 2, self.head_dim, self.window_size, dpr[i + begin],
+ 'W' if not i % 2 else 'SW', input_resolution)
+ for i in range(config[0])] + \
+ [nn.Conv2d(dim, 2 * dim, 2, 2, 0, bias=False)]
+
+ begin += config[0]
+ self.m_down2 = [ConvTransBlock(dim, dim, self.head_dim, self.window_size, dpr[i + begin],
+ 'W' if not i % 2 else 'SW', input_resolution // 2)
+ for i in range(config[1])] + \
+ [nn.Conv2d(2 * dim, 4 * dim, 2, 2, 0, bias=False)]
+
+ begin += config[1]
+ self.m_down3 = [ConvTransBlock(2 * dim, 2 * dim, self.head_dim, self.window_size, dpr[i + begin],
+ 'W' if not i % 2 else 'SW', input_resolution // 4)
+ for i in range(config[2])] + \
+ [nn.Conv2d(4 * dim, 8 * dim, 2, 2, 0, bias=False)]
+
+ begin += config[2]
+ self.m_body = [ConvTransBlock(4 * dim, 4 * dim, self.head_dim, self.window_size, dpr[i + begin],
+ 'W' if not i % 2 else 'SW', input_resolution // 8)
+ for i in range(config[3])]
+
+ begin += config[3]
+ self.m_up3 = [nn.ConvTranspose2d(8 * dim, 4 * dim, 2, 2, 0, bias=False), ] + \
+ [ConvTransBlock(2 * dim, 2 * dim, self.head_dim, self.window_size, dpr[i + begin],
+ 'W' if not i % 2 else 'SW', input_resolution // 4)
+ for i in range(config[4])]
+
+ begin += config[4]
+ self.m_up2 = [nn.ConvTranspose2d(4 * dim, 2 * dim, 2, 2, 0, bias=False), ] + \
+ [ConvTransBlock(dim, dim, self.head_dim, self.window_size, dpr[i + begin],
+ 'W' if not i % 2 else 'SW', input_resolution // 2)
+ for i in range(config[5])]
+
+ begin += config[5]
+ self.m_up1 = [nn.ConvTranspose2d(2 * dim, dim, 2, 2, 0, bias=False), ] + \
+ [ConvTransBlock(dim // 2, dim // 2, self.head_dim, self.window_size, dpr[i + begin],
+ 'W' if not i % 2 else 'SW', input_resolution)
+ for i in range(config[6])]
+
+ self.m_tail = [nn.Conv2d(dim, in_nc, 3, 1, 1, bias=False)]
+
+ self.m_head = nn.Sequential(*self.m_head)
+ self.m_down1 = nn.Sequential(*self.m_down1)
+ self.m_down2 = nn.Sequential(*self.m_down2)
+ self.m_down3 = nn.Sequential(*self.m_down3)
+ self.m_body = nn.Sequential(*self.m_body)
+ self.m_up3 = nn.Sequential(*self.m_up3)
+ self.m_up2 = nn.Sequential(*self.m_up2)
+ self.m_up1 = nn.Sequential(*self.m_up1)
+ self.m_tail = nn.Sequential(*self.m_tail)
+ # self.apply(self._init_weights)
+
+ def forward(self, x0):
+
+ h, w = x0.size()[-2:]
+ paddingBottom = int(np.ceil(h / 64) * 64 - h)
+ paddingRight = int(np.ceil(w / 64) * 64 - w)
+ x0 = nn.ReplicationPad2d((0, paddingRight, 0, paddingBottom))(x0)
+
+ x1 = self.m_head(x0)
+ x2 = self.m_down1(x1)
+ x3 = self.m_down2(x2)
+ x4 = self.m_down3(x3)
+ x = self.m_body(x4)
+ x = self.m_up3(x + x4)
+ x = self.m_up2(x + x3)
+ x = self.m_up1(x + x2)
+ x = self.m_tail(x + x1)
+
+ x = x[..., :h, :w]
+
+ return x
+
+ def _init_weights(self, m):
+ if isinstance(m, nn.Linear):
+ trunc_normal_(m.weight, std=.02)
+ if m.bias is not None:
+ nn.init.constant_(m.bias, 0)
+ elif isinstance(m, nn.LayerNorm):
+ nn.init.constant_(m.bias, 0)
+ nn.init.constant_(m.weight, 1.0) \ No newline at end of file