aboutsummaryrefslogtreecommitdiff
path: root/modules/textual_inversion/autocrop.py
diff options
context:
space:
mode:
authorcaptin411 <captindave@gmail.com>2022-10-23 04:11:07 -0700
committerGitHub <noreply@github.com>2022-10-23 04:11:07 -0700
commit1be5933ba21a3badec42b7b2753d626f849b609d (patch)
treebf7e4905e1da5574be6df19420e198968e5d4132 /modules/textual_inversion/autocrop.py
parent0ddaf8d2028a7251e8c4ad93551a43b5d4700841 (diff)
auto cropping now works with non square crops
Diffstat (limited to 'modules/textual_inversion/autocrop.py')
-rw-r--r--modules/textual_inversion/autocrop.py509
1 files changed, 269 insertions, 240 deletions
diff --git a/modules/textual_inversion/autocrop.py b/modules/textual_inversion/autocrop.py
index 5a551c25..b2f9241c 100644
--- a/modules/textual_inversion/autocrop.py
+++ b/modules/textual_inversion/autocrop.py
@@ -1,241 +1,270 @@
-import cv2
-from collections import defaultdict
-from math import log, sqrt
-import numpy as np
-from PIL import Image, ImageDraw
-
-GREEN = "#0F0"
-BLUE = "#00F"
-RED = "#F00"
-
-
-def crop_image(im, settings):
- """ Intelligently crop an image to the subject matter """
- if im.height > im.width:
- im = im.resize((settings.crop_width, settings.crop_height * im.height // im.width))
- elif im.width > im.height:
- im = im.resize((settings.crop_width * im.width // im.height, settings.crop_height))
- else:
- im = im.resize((settings.crop_width, settings.crop_height))
-
- if im.height == im.width:
- return im
-
- focus = focal_point(im, settings)
-
- # take the focal point and turn it into crop coordinates that try to center over the focal
- # point but then get adjusted back into the frame
- y_half = int(settings.crop_height / 2)
- x_half = int(settings.crop_width / 2)
-
- x1 = focus.x - x_half
- if x1 < 0:
- x1 = 0
- elif x1 + settings.crop_width > im.width:
- x1 = im.width - settings.crop_width
-
- y1 = focus.y - y_half
- if y1 < 0:
- y1 = 0
- elif y1 + settings.crop_height > im.height:
- y1 = im.height - settings.crop_height
-
- x2 = x1 + settings.crop_width
- y2 = y1 + settings.crop_height
-
- crop = [x1, y1, x2, y2]
-
- if settings.annotate_image:
- d = ImageDraw.Draw(im)
- rect = list(crop)
- rect[2] -= 1
- rect[3] -= 1
- d.rectangle(rect, outline=GREEN)
- if settings.destop_view_image:
- im.show()
-
- return im.crop(tuple(crop))
-
-def focal_point(im, settings):
- corner_points = image_corner_points(im, settings)
- entropy_points = image_entropy_points(im, settings)
- face_points = image_face_points(im, settings)
-
- total_points = len(corner_points) + len(entropy_points) + len(face_points)
-
- corner_weight = settings.corner_points_weight
- entropy_weight = settings.entropy_points_weight
- face_weight = settings.face_points_weight
-
- weight_pref_total = corner_weight + entropy_weight + face_weight
-
- # weight things
- pois = []
- if weight_pref_total == 0 or total_points == 0:
- return pois
-
- pois.extend(
- [ PointOfInterest( p.x, p.y, weight=p.weight * ( (corner_weight/weight_pref_total) / (len(corner_points)/total_points) )) for p in corner_points ]
- )
- pois.extend(
- [ PointOfInterest( p.x, p.y, weight=p.weight * ( (entropy_weight/weight_pref_total) / (len(entropy_points)/total_points) )) for p in entropy_points ]
- )
- pois.extend(
- [ PointOfInterest( p.x, p.y, weight=p.weight * ( (face_weight/weight_pref_total) / (len(face_points)/total_points) )) for p in face_points ]
- )
-
- average_point = poi_average(pois, settings)
-
- if settings.annotate_image:
- d = ImageDraw.Draw(im)
- for f in face_points:
- d.rectangle(f.bounding(f.size), outline=RED)
- for f in entropy_points:
- d.rectangle(f.bounding(30), outline=BLUE)
- for poi in pois:
- w = max(4, 4 * 0.5 * sqrt(poi.weight))
- d.ellipse(poi.bounding(w), fill=BLUE)
- d.ellipse(average_point.bounding(25), outline=GREEN)
-
- return average_point
-
-
-def image_face_points(im, settings):
- np_im = np.array(im)
- gray = cv2.cvtColor(np_im, cv2.COLOR_BGR2GRAY)
-
- tries = [
- [ f'{cv2.data.haarcascades}haarcascade_eye.xml', 0.01 ],
- [ f'{cv2.data.haarcascades}haarcascade_frontalface_default.xml', 0.05 ],
- [ f'{cv2.data.haarcascades}haarcascade_profileface.xml', 0.05 ],
- [ f'{cv2.data.haarcascades}haarcascade_frontalface_alt.xml', 0.05 ],
- [ f'{cv2.data.haarcascades}haarcascade_frontalface_alt2.xml', 0.05 ],
- [ f'{cv2.data.haarcascades}haarcascade_frontalface_alt_tree.xml', 0.05 ],
- [ f'{cv2.data.haarcascades}haarcascade_eye_tree_eyeglasses.xml', 0.05 ],
- [ f'{cv2.data.haarcascades}haarcascade_upperbody.xml', 0.05 ]
- ]
-
- for t in tries:
- # print(t[0])
- classifier = cv2.CascadeClassifier(t[0])
- minsize = int(min(im.width, im.height) * t[1]) # at least N percent of the smallest side
- try:
- faces = classifier.detectMultiScale(gray, scaleFactor=1.1,
- minNeighbors=7, minSize=(minsize, minsize), flags=cv2.CASCADE_SCALE_IMAGE)
- except:
- continue
-
- if len(faces) > 0:
- rects = [[f[0], f[1], f[0] + f[2], f[1] + f[3]] for f in faces]
- return [PointOfInterest((r[0] +r[2]) // 2, (r[1] + r[3]) // 2, size=abs(r[0]-r[2])) for r in rects]
- return []
-
-
-def image_corner_points(im, settings):
- grayscale = im.convert("L")
-
- # naive attempt at preventing focal points from collecting at watermarks near the bottom
- gd = ImageDraw.Draw(grayscale)
- gd.rectangle([0, im.height*.9, im.width, im.height], fill="#999")
-
- np_im = np.array(grayscale)
-
- points = cv2.goodFeaturesToTrack(
- np_im,
- maxCorners=100,
- qualityLevel=0.04,
- minDistance=min(grayscale.width, grayscale.height)*0.07,
- useHarrisDetector=False,
- )
-
- if points is None:
- return []
-
- focal_points = []
- for point in points:
- x, y = point.ravel()
- focal_points.append(PointOfInterest(x, y, size=4))
-
- return focal_points
-
-
-def image_entropy_points(im, settings):
- landscape = im.height < im.width
- portrait = im.height > im.width
- if landscape:
- move_idx = [0, 2]
- move_max = im.size[0]
- elif portrait:
- move_idx = [1, 3]
- move_max = im.size[1]
- else:
- return []
-
- e_max = 0
- crop_current = [0, 0, settings.crop_width, settings.crop_height]
- crop_best = crop_current
- while crop_current[move_idx[1]] < move_max:
- crop = im.crop(tuple(crop_current))
- e = image_entropy(crop)
-
- if (e > e_max):
- e_max = e
- crop_best = list(crop_current)
-
- crop_current[move_idx[0]] += 4
- crop_current[move_idx[1]] += 4
-
- x_mid = int(crop_best[0] + settings.crop_width/2)
- y_mid = int(crop_best[1] + settings.crop_height/2)
-
- return [PointOfInterest(x_mid, y_mid, size=25)]
-
-
-def image_entropy(im):
- # greyscale image entropy
- # band = np.asarray(im.convert("L"))
- band = np.asarray(im.convert("1"), dtype=np.uint8)
- hist, _ = np.histogram(band, bins=range(0, 256))
- hist = hist[hist > 0]
- return -np.log2(hist / hist.sum()).sum()
-
-
-def poi_average(pois, settings):
- weight = 0.0
- x = 0.0
- y = 0.0
- for poi in pois:
- weight += poi.weight
- x += poi.x * poi.weight
- y += poi.y * poi.weight
- avg_x = round(x / weight)
- avg_y = round(y / weight)
-
- return PointOfInterest(avg_x, avg_y)
-
-
-class PointOfInterest:
- def __init__(self, x, y, weight=1.0, size=10):
- self.x = x
- self.y = y
- self.weight = weight
- self.size = size
-
- def bounding(self, size):
- return [
- self.x - size//2,
- self.y - size//2,
- self.x + size//2,
- self.y + size//2
- ]
-
-
-class Settings:
- def __init__(self, crop_width=512, crop_height=512, corner_points_weight=0.5, entropy_points_weight=0.5, face_points_weight=0.5, annotate_image=False):
- self.crop_width = crop_width
- self.crop_height = crop_height
- self.corner_points_weight = corner_points_weight
- self.entropy_points_weight = entropy_points_weight
- self.face_points_weight = entropy_points_weight
- self.annotate_image = annotate_image
+import cv2
+from collections import defaultdict
+from math import log, sqrt
+import numpy as np
+from PIL import Image, ImageDraw
+
+GREEN = "#0F0"
+BLUE = "#00F"
+RED = "#F00"
+
+
+def crop_image(im, settings):
+ """ Intelligently crop an image to the subject matter """
+
+ scale_by = 1
+ if is_landscape(im.width, im.height):
+ scale_by = settings.crop_height / im.height
+ elif is_portrait(im.width, im.height):
+ scale_by = settings.crop_width / im.width
+ elif is_square(im.width, im.height):
+ if is_square(settings.crop_width, settings.crop_height):
+ scale_by = settings.crop_width / im.width
+ elif is_landscape(settings.crop_width, settings.crop_height):
+ scale_by = settings.crop_width / im.width
+ elif is_portrait(settings.crop_width, settings.crop_height):
+ scale_by = settings.crop_height / im.height
+
+ im = im.resize((int(im.width * scale_by), int(im.height * scale_by)))
+
+ if im.width == settings.crop_width and im.height == settings.crop_height:
+ if settings.annotate_image:
+ d = ImageDraw.Draw(im)
+ rect = [0, 0, im.width, im.height]
+ rect[2] -= 1
+ rect[3] -= 1
+ d.rectangle(rect, outline=GREEN)
+ if settings.destop_view_image:
+ im.show()
+ return im
+
+ focus = focal_point(im, settings)
+
+ # take the focal point and turn it into crop coordinates that try to center over the focal
+ # point but then get adjusted back into the frame
+ y_half = int(settings.crop_height / 2)
+ x_half = int(settings.crop_width / 2)
+
+ x1 = focus.x - x_half
+ if x1 < 0:
+ x1 = 0
+ elif x1 + settings.crop_width > im.width:
+ x1 = im.width - settings.crop_width
+
+ y1 = focus.y - y_half
+ if y1 < 0:
+ y1 = 0
+ elif y1 + settings.crop_height > im.height:
+ y1 = im.height - settings.crop_height
+
+ x2 = x1 + settings.crop_width
+ y2 = y1 + settings.crop_height
+
+ crop = [x1, y1, x2, y2]
+
+ if settings.annotate_image:
+ d = ImageDraw.Draw(im)
+ rect = list(crop)
+ rect[2] -= 1
+ rect[3] -= 1
+ d.rectangle(rect, outline=GREEN)
+ if settings.destop_view_image:
+ im.show()
+
+ return im.crop(tuple(crop))
+
+def focal_point(im, settings):
+ corner_points = image_corner_points(im, settings)
+ entropy_points = image_entropy_points(im, settings)
+ face_points = image_face_points(im, settings)
+
+ total_points = len(corner_points) + len(entropy_points) + len(face_points)
+
+ corner_weight = settings.corner_points_weight
+ entropy_weight = settings.entropy_points_weight
+ face_weight = settings.face_points_weight
+
+ weight_pref_total = corner_weight + entropy_weight + face_weight
+
+ # weight things
+ pois = []
+ if weight_pref_total == 0 or total_points == 0:
+ return pois
+
+ pois.extend(
+ [ PointOfInterest( p.x, p.y, weight=p.weight * ( (corner_weight/weight_pref_total) / (len(corner_points)/total_points) )) for p in corner_points ]
+ )
+ pois.extend(
+ [ PointOfInterest( p.x, p.y, weight=p.weight * ( (entropy_weight/weight_pref_total) / (len(entropy_points)/total_points) )) for p in entropy_points ]
+ )
+ pois.extend(
+ [ PointOfInterest( p.x, p.y, weight=p.weight * ( (face_weight/weight_pref_total) / (len(face_points)/total_points) )) for p in face_points ]
+ )
+
+ average_point = poi_average(pois, settings)
+
+ if settings.annotate_image:
+ d = ImageDraw.Draw(im)
+ for f in face_points:
+ d.rectangle(f.bounding(f.size), outline=RED)
+ for f in entropy_points:
+ d.rectangle(f.bounding(30), outline=BLUE)
+ for poi in pois:
+ w = max(4, 4 * 0.5 * sqrt(poi.weight))
+ d.ellipse(poi.bounding(w), fill=BLUE)
+ d.ellipse(average_point.bounding(25), outline=GREEN)
+
+ return average_point
+
+
+def image_face_points(im, settings):
+ np_im = np.array(im)
+ gray = cv2.cvtColor(np_im, cv2.COLOR_BGR2GRAY)
+
+ tries = [
+ [ f'{cv2.data.haarcascades}haarcascade_eye.xml', 0.01 ],
+ [ f'{cv2.data.haarcascades}haarcascade_frontalface_default.xml', 0.05 ],
+ [ f'{cv2.data.haarcascades}haarcascade_profileface.xml', 0.05 ],
+ [ f'{cv2.data.haarcascades}haarcascade_frontalface_alt.xml', 0.05 ],
+ [ f'{cv2.data.haarcascades}haarcascade_frontalface_alt2.xml', 0.05 ],
+ [ f'{cv2.data.haarcascades}haarcascade_frontalface_alt_tree.xml', 0.05 ],
+ [ f'{cv2.data.haarcascades}haarcascade_eye_tree_eyeglasses.xml', 0.05 ],
+ [ f'{cv2.data.haarcascades}haarcascade_upperbody.xml', 0.05 ]
+ ]
+
+ for t in tries:
+ # print(t[0])
+ classifier = cv2.CascadeClassifier(t[0])
+ minsize = int(min(im.width, im.height) * t[1]) # at least N percent of the smallest side
+ try:
+ faces = classifier.detectMultiScale(gray, scaleFactor=1.1,
+ minNeighbors=7, minSize=(minsize, minsize), flags=cv2.CASCADE_SCALE_IMAGE)
+ except:
+ continue
+
+ if len(faces) > 0:
+ rects = [[f[0], f[1], f[0] + f[2], f[1] + f[3]] for f in faces]
+ return [PointOfInterest((r[0] +r[2]) // 2, (r[1] + r[3]) // 2, size=abs(r[0]-r[2])) for r in rects]
+ return []
+
+
+def image_corner_points(im, settings):
+ grayscale = im.convert("L")
+
+ # naive attempt at preventing focal points from collecting at watermarks near the bottom
+ gd = ImageDraw.Draw(grayscale)
+ gd.rectangle([0, im.height*.9, im.width, im.height], fill="#999")
+
+ np_im = np.array(grayscale)
+
+ points = cv2.goodFeaturesToTrack(
+ np_im,
+ maxCorners=100,
+ qualityLevel=0.04,
+ minDistance=min(grayscale.width, grayscale.height)*0.07,
+ useHarrisDetector=False,
+ )
+
+ if points is None:
+ return []
+
+ focal_points = []
+ for point in points:
+ x, y = point.ravel()
+ focal_points.append(PointOfInterest(x, y, size=4))
+
+ return focal_points
+
+
+def image_entropy_points(im, settings):
+ landscape = im.height < im.width
+ portrait = im.height > im.width
+ if landscape:
+ move_idx = [0, 2]
+ move_max = im.size[0]
+ elif portrait:
+ move_idx = [1, 3]
+ move_max = im.size[1]
+ else:
+ return []
+
+ e_max = 0
+ crop_current = [0, 0, settings.crop_width, settings.crop_height]
+ crop_best = crop_current
+ while crop_current[move_idx[1]] < move_max:
+ crop = im.crop(tuple(crop_current))
+ e = image_entropy(crop)
+
+ if (e > e_max):
+ e_max = e
+ crop_best = list(crop_current)
+
+ crop_current[move_idx[0]] += 4
+ crop_current[move_idx[1]] += 4
+
+ x_mid = int(crop_best[0] + settings.crop_width/2)
+ y_mid = int(crop_best[1] + settings.crop_height/2)
+
+ return [PointOfInterest(x_mid, y_mid, size=25)]
+
+
+def image_entropy(im):
+ # greyscale image entropy
+ # band = np.asarray(im.convert("L"))
+ band = np.asarray(im.convert("1"), dtype=np.uint8)
+ hist, _ = np.histogram(band, bins=range(0, 256))
+ hist = hist[hist > 0]
+ return -np.log2(hist / hist.sum()).sum()
+
+
+def poi_average(pois, settings):
+ weight = 0.0
+ x = 0.0
+ y = 0.0
+ for poi in pois:
+ weight += poi.weight
+ x += poi.x * poi.weight
+ y += poi.y * poi.weight
+ avg_x = round(x / weight)
+ avg_y = round(y / weight)
+
+ return PointOfInterest(avg_x, avg_y)
+
+
+def is_landscape(w, h):
+ return w > h
+
+
+def is_portrait(w, h):
+ return h > w
+
+
+def is_square(w, h):
+ return w == h
+
+
+class PointOfInterest:
+ def __init__(self, x, y, weight=1.0, size=10):
+ self.x = x
+ self.y = y
+ self.weight = weight
+ self.size = size
+
+ def bounding(self, size):
+ return [
+ self.x - size//2,
+ self.y - size//2,
+ self.x + size//2,
+ self.y + size//2
+ ]
+
+
+class Settings:
+ def __init__(self, crop_width=512, crop_height=512, corner_points_weight=0.5, entropy_points_weight=0.5, face_points_weight=0.5, annotate_image=False):
+ self.crop_width = crop_width
+ self.crop_height = crop_height
+ self.corner_points_weight = corner_points_weight
+ self.entropy_points_weight = entropy_points_weight
+ self.face_points_weight = entropy_points_weight
+ self.annotate_image = annotate_image
self.destop_view_image = False \ No newline at end of file