aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--javascript/hints.js1
-rw-r--r--modules/models/diffusion/uni_pc/__init__.py1
-rw-r--r--modules/models/diffusion/uni_pc/sampler.py99
-rw-r--r--modules/models/diffusion/uni_pc/uni_pc.py856
-rw-r--r--modules/processing.py4
-rw-r--r--modules/sd_samplers.py2
-rw-r--r--modules/sd_samplers_compvis.py45
-rw-r--r--modules/shared.py4
-rw-r--r--scripts/xyz_grid.py7
-rw-r--r--test/basic_features/txt2img_test.py2
10 files changed, 1011 insertions, 10 deletions
diff --git a/javascript/hints.js b/javascript/hints.js
index f1199009..7f4101b2 100644
--- a/javascript/hints.js
+++ b/javascript/hints.js
@@ -6,6 +6,7 @@ titles = {
"GFPGAN": "Restore low quality faces using GFPGAN neural network",
"Euler a": "Euler Ancestral - very creative, each can get a completely different picture depending on step count, setting steps higher than 30-40 does not help",
"DDIM": "Denoising Diffusion Implicit Models - best at inpainting",
+ "UniPC": "Unified Predictor-Corrector Framework for Fast Sampling of Diffusion Models",
"DPM adaptive": "Ignores step count - uses a number of steps determined by the CFG and resolution",
"Batch count": "How many batches of images to create (has no impact on generation performance or VRAM usage)",
diff --git a/modules/models/diffusion/uni_pc/__init__.py b/modules/models/diffusion/uni_pc/__init__.py
new file mode 100644
index 00000000..e1265e3f
--- /dev/null
+++ b/modules/models/diffusion/uni_pc/__init__.py
@@ -0,0 +1 @@
+from .sampler import UniPCSampler
diff --git a/modules/models/diffusion/uni_pc/sampler.py b/modules/models/diffusion/uni_pc/sampler.py
new file mode 100644
index 00000000..6bb3bb21
--- /dev/null
+++ b/modules/models/diffusion/uni_pc/sampler.py
@@ -0,0 +1,99 @@
+"""SAMPLING ONLY."""
+
+import torch
+
+from .uni_pc import NoiseScheduleVP, model_wrapper, UniPC
+from modules import shared
+
+class UniPCSampler(object):
+ def __init__(self, model, **kwargs):
+ super().__init__()
+ self.model = model
+ to_torch = lambda x: x.clone().detach().to(torch.float32).to(model.device)
+ self.before_sample = None
+ self.after_sample = None
+ self.register_buffer('alphas_cumprod', to_torch(model.alphas_cumprod))
+
+ def register_buffer(self, name, attr):
+ if type(attr) == torch.Tensor:
+ if attr.device != torch.device("cuda"):
+ attr = attr.to(torch.device("cuda"))
+ setattr(self, name, attr)
+
+ def set_hooks(self, before_sample, after_sample, after_update):
+ self.before_sample = before_sample
+ self.after_sample = after_sample
+ self.after_update = after_update
+
+ @torch.no_grad()
+ def sample(self,
+ S,
+ batch_size,
+ shape,
+ conditioning=None,
+ callback=None,
+ normals_sequence=None,
+ img_callback=None,
+ quantize_x0=False,
+ eta=0.,
+ mask=None,
+ x0=None,
+ temperature=1.,
+ noise_dropout=0.,
+ score_corrector=None,
+ corrector_kwargs=None,
+ verbose=True,
+ x_T=None,
+ log_every_t=100,
+ unconditional_guidance_scale=1.,
+ unconditional_conditioning=None,
+ # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
+ **kwargs
+ ):
+ if conditioning is not None:
+ if isinstance(conditioning, dict):
+ ctmp = conditioning[list(conditioning.keys())[0]]
+ while isinstance(ctmp, list): ctmp = ctmp[0]
+ cbs = ctmp.shape[0]
+ if cbs != batch_size:
+ print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
+
+ elif isinstance(conditioning, list):
+ for ctmp in conditioning:
+ if ctmp.shape[0] != batch_size:
+ print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
+
+ else:
+ if conditioning.shape[0] != batch_size:
+ print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
+
+ # sampling
+ C, H, W = shape
+ size = (batch_size, C, H, W)
+ print(f'Data shape for UniPC sampling is {size}')
+
+ device = self.model.betas.device
+ if x_T is None:
+ img = torch.randn(size, device=device)
+ else:
+ img = x_T
+
+ ns = NoiseScheduleVP('discrete', alphas_cumprod=self.alphas_cumprod)
+
+ # SD 1.X is "noise", SD 2.X is "v"
+ model_type = "v" if self.model.parameterization == "v" else "noise"
+
+ model_fn = model_wrapper(
+ lambda x, t, c: self.model.apply_model(x, t, c),
+ ns,
+ model_type=model_type,
+ guidance_type="classifier-free",
+ #condition=conditioning,
+ #unconditional_condition=unconditional_conditioning,
+ guidance_scale=unconditional_guidance_scale,
+ )
+
+ uni_pc = UniPC(model_fn, ns, predict_x0=True, thresholding=False, variant=shared.opts.uni_pc_variant, condition=conditioning, unconditional_condition=unconditional_conditioning, before_sample=self.before_sample, after_sample=self.after_sample, after_update=self.after_update)
+ x = uni_pc.sample(img, steps=S, skip_type=shared.opts.uni_pc_skip_type, method="multistep", order=shared.opts.uni_pc_order, lower_order_final=shared.opts.uni_pc_lower_order_final)
+
+ return x.to(device), None
diff --git a/modules/models/diffusion/uni_pc/uni_pc.py b/modules/models/diffusion/uni_pc/uni_pc.py
new file mode 100644
index 00000000..df63d1bc
--- /dev/null
+++ b/modules/models/diffusion/uni_pc/uni_pc.py
@@ -0,0 +1,856 @@
+import torch
+import torch.nn.functional as F
+import math
+
+
+class NoiseScheduleVP:
+ def __init__(
+ self,
+ schedule='discrete',
+ betas=None,
+ alphas_cumprod=None,
+ continuous_beta_0=0.1,
+ continuous_beta_1=20.,
+ ):
+ """Create a wrapper class for the forward SDE (VP type).
+
+ ***
+ Update: We support discrete-time diffusion models by implementing a picewise linear interpolation for log_alpha_t.
+ We recommend to use schedule='discrete' for the discrete-time diffusion models, especially for high-resolution images.
+ ***
+
+ The forward SDE ensures that the condition distribution q_{t|0}(x_t | x_0) = N ( alpha_t * x_0, sigma_t^2 * I ).
+ We further define lambda_t = log(alpha_t) - log(sigma_t), which is the half-logSNR (described in the DPM-Solver paper).
+ Therefore, we implement the functions for computing alpha_t, sigma_t and lambda_t. For t in [0, T], we have:
+
+ log_alpha_t = self.marginal_log_mean_coeff(t)
+ sigma_t = self.marginal_std(t)
+ lambda_t = self.marginal_lambda(t)
+
+ Moreover, as lambda(t) is an invertible function, we also support its inverse function:
+
+ t = self.inverse_lambda(lambda_t)
+
+ ===============================================================
+
+ We support both discrete-time DPMs (trained on n = 0, 1, ..., N-1) and continuous-time DPMs (trained on t in [t_0, T]).
+
+ 1. For discrete-time DPMs:
+
+ For discrete-time DPMs trained on n = 0, 1, ..., N-1, we convert the discrete steps to continuous time steps by:
+ t_i = (i + 1) / N
+ e.g. for N = 1000, we have t_0 = 1e-3 and T = t_{N-1} = 1.
+ We solve the corresponding diffusion ODE from time T = 1 to time t_0 = 1e-3.
+
+ Args:
+ betas: A `torch.Tensor`. The beta array for the discrete-time DPM. (See the original DDPM paper for details)
+ alphas_cumprod: A `torch.Tensor`. The cumprod alphas for the discrete-time DPM. (See the original DDPM paper for details)
+
+ Note that we always have alphas_cumprod = cumprod(betas). Therefore, we only need to set one of `betas` and `alphas_cumprod`.
+
+ **Important**: Please pay special attention for the args for `alphas_cumprod`:
+ The `alphas_cumprod` is the \hat{alpha_n} arrays in the notations of DDPM. Specifically, DDPMs assume that
+ q_{t_n | 0}(x_{t_n} | x_0) = N ( \sqrt{\hat{alpha_n}} * x_0, (1 - \hat{alpha_n}) * I ).
+ Therefore, the notation \hat{alpha_n} is different from the notation alpha_t in DPM-Solver. In fact, we have
+ alpha_{t_n} = \sqrt{\hat{alpha_n}},
+ and
+ log(alpha_{t_n}) = 0.5 * log(\hat{alpha_n}).
+
+
+ 2. For continuous-time DPMs:
+
+ We support two types of VPSDEs: linear (DDPM) and cosine (improved-DDPM). The hyperparameters for the noise
+ schedule are the default settings in DDPM and improved-DDPM:
+
+ Args:
+ beta_min: A `float` number. The smallest beta for the linear schedule.
+ beta_max: A `float` number. The largest beta for the linear schedule.
+ cosine_s: A `float` number. The hyperparameter in the cosine schedule.
+ cosine_beta_max: A `float` number. The hyperparameter in the cosine schedule.
+ T: A `float` number. The ending time of the forward process.
+
+ ===============================================================
+
+ Args:
+ schedule: A `str`. The noise schedule of the forward SDE. 'discrete' for discrete-time DPMs,
+ 'linear' or 'cosine' for continuous-time DPMs.
+ Returns:
+ A wrapper object of the forward SDE (VP type).
+
+ ===============================================================
+
+ Example:
+
+ # For discrete-time DPMs, given betas (the beta array for n = 0, 1, ..., N - 1):
+ >>> ns = NoiseScheduleVP('discrete', betas=betas)
+
+ # For discrete-time DPMs, given alphas_cumprod (the \hat{alpha_n} array for n = 0, 1, ..., N - 1):
+ >>> ns = NoiseScheduleVP('discrete', alphas_cumprod=alphas_cumprod)
+
+ # For continuous-time DPMs (VPSDE), linear schedule:
+ >>> ns = NoiseScheduleVP('linear', continuous_beta_0=0.1, continuous_beta_1=20.)
+
+ """
+
+ if schedule not in ['discrete', 'linear', 'cosine']:
+ raise ValueError("Unsupported noise schedule {}. The schedule needs to be 'discrete' or 'linear' or 'cosine'".format(schedule))
+
+ self.schedule = schedule
+ if schedule == 'discrete':
+ if betas is not None:
+ log_alphas = 0.5 * torch.log(1 - betas).cumsum(dim=0)
+ else:
+ assert alphas_cumprod is not None
+ log_alphas = 0.5 * torch.log(alphas_cumprod)
+ self.total_N = len(log_alphas)
+ self.T = 1.
+ self.t_array = torch.linspace(0., 1., self.total_N + 1)[1:].reshape((1, -1))
+ self.log_alpha_array = log_alphas.reshape((1, -1,))
+ else:
+ self.total_N = 1000
+ self.beta_0 = continuous_beta_0
+ self.beta_1 = continuous_beta_1
+ self.cosine_s = 0.008
+ self.cosine_beta_max = 999.
+ self.cosine_t_max = math.atan(self.cosine_beta_max * (1. + self.cosine_s) / math.pi) * 2. * (1. + self.cosine_s) / math.pi - self.cosine_s
+ self.cosine_log_alpha_0 = math.log(math.cos(self.cosine_s / (1. + self.cosine_s) * math.pi / 2.))
+ self.schedule = schedule
+ if schedule == 'cosine':
+ # For the cosine schedule, T = 1 will have numerical issues. So we manually set the ending time T.
+ # Note that T = 0.9946 may be not the optimal setting. However, we find it works well.
+ self.T = 0.9946
+ else:
+ self.T = 1.
+
+ def marginal_log_mean_coeff(self, t):
+ """
+ Compute log(alpha_t) of a given continuous-time label t in [0, T].
+ """
+ if self.schedule == 'discrete':
+ return interpolate_fn(t.reshape((-1, 1)), self.t_array.to(t.device), self.log_alpha_array.to(t.device)).reshape((-1))
+ elif self.schedule == 'linear':
+ return -0.25 * t ** 2 * (self.beta_1 - self.beta_0) - 0.5 * t * self.beta_0
+ elif self.schedule == 'cosine':
+ log_alpha_fn = lambda s: torch.log(torch.cos((s + self.cosine_s) / (1. + self.cosine_s) * math.pi / 2.))
+ log_alpha_t = log_alpha_fn(t) - self.cosine_log_alpha_0
+ return log_alpha_t
+
+ def marginal_alpha(self, t):
+ """
+ Compute alpha_t of a given continuous-time label t in [0, T].
+ """
+ return torch.exp(self.marginal_log_mean_coeff(t))
+
+ def marginal_std(self, t):
+ """
+ Compute sigma_t of a given continuous-time label t in [0, T].
+ """
+ return torch.sqrt(1. - torch.exp(2. * self.marginal_log_mean_coeff(t)))
+
+ def marginal_lambda(self, t):
+ """
+ Compute lambda_t = log(alpha_t) - log(sigma_t) of a given continuous-time label t in [0, T].
+ """
+ log_mean_coeff = self.marginal_log_mean_coeff(t)
+ log_std = 0.5 * torch.log(1. - torch.exp(2. * log_mean_coeff))
+ return log_mean_coeff - log_std
+
+ def inverse_lambda(self, lamb):
+ """
+ Compute the continuous-time label t in [0, T] of a given half-logSNR lambda_t.
+ """
+ if self.schedule == 'linear':
+ tmp = 2. * (self.beta_1 - self.beta_0) * torch.logaddexp(-2. * lamb, torch.zeros((1,)).to(lamb))
+ Delta = self.beta_0**2 + tmp
+ return tmp / (torch.sqrt(Delta) + self.beta_0) / (self.beta_1 - self.beta_0)
+ elif self.schedule == 'discrete':
+ log_alpha = -0.5 * torch.logaddexp(torch.zeros((1,)).to(lamb.device), -2. * lamb)
+ t = interpolate_fn(log_alpha.reshape((-1, 1)), torch.flip(self.log_alpha_array.to(lamb.device), [1]), torch.flip(self.t_array.to(lamb.device), [1]))
+ return t.reshape((-1,))
+ else:
+ log_alpha = -0.5 * torch.logaddexp(-2. * lamb, torch.zeros((1,)).to(lamb))
+ t_fn = lambda log_alpha_t: torch.arccos(torch.exp(log_alpha_t + self.cosine_log_alpha_0)) * 2. * (1. + self.cosine_s) / math.pi - self.cosine_s
+ t = t_fn(log_alpha)
+ return t
+
+
+def model_wrapper(
+ model,
+ noise_schedule,
+ model_type="noise",
+ model_kwargs={},
+ guidance_type="uncond",
+ #condition=None,
+ #unconditional_condition=None,
+ guidance_scale=1.,
+ classifier_fn=None,
+ classifier_kwargs={},
+):
+ """Create a wrapper function for the noise prediction model.
+
+ DPM-Solver needs to solve the continuous-time diffusion ODEs. For DPMs trained on discrete-time labels, we need to
+ firstly wrap the model function to a noise prediction model that accepts the continuous time as the input.
+
+ We support four types of the diffusion model by setting `model_type`:
+
+ 1. "noise": noise prediction model. (Trained by predicting noise).
+
+ 2. "x_start": data prediction model. (Trained by predicting the data x_0 at time 0).
+
+ 3. "v": velocity prediction model. (Trained by predicting the velocity).
+ The "v" prediction is derivation detailed in Appendix D of [1], and is used in Imagen-Video [2].
+
+ [1] Salimans, Tim, and Jonathan Ho. "Progressive distillation for fast sampling of diffusion models."
+ arXiv preprint arXiv:2202.00512 (2022).
+ [2] Ho, Jonathan, et al. "Imagen Video: High Definition Video Generation with Diffusion Models."
+ arXiv preprint arXiv:2210.02303 (2022).
+
+ 4. "score": marginal score function. (Trained by denoising score matching).
+ Note that the score function and the noise prediction model follows a simple relationship:
+ ```
+ noise(x_t, t) = -sigma_t * score(x_t, t)
+ ```
+
+ We support three types of guided sampling by DPMs by setting `guidance_type`:
+ 1. "uncond": unconditional sampling by DPMs.
+ The input `model` has the following format:
+ ``
+ model(x, t_input, **model_kwargs) -> noise | x_start | v | score
+ ``
+
+ 2. "classifier": classifier guidance sampling [3] by DPMs and another classifier.
+ The input `model` has the following format:
+ ``
+ model(x, t_input, **model_kwargs) -> noise | x_start | v | score
+ ``
+
+ The input `classifier_fn` has the following format:
+ ``
+ classifier_fn(x, t_input, cond, **classifier_kwargs) -> logits(x, t_input, cond)
+ ``
+
+ [3] P. Dhariwal and A. Q. Nichol, "Diffusion models beat GANs on image synthesis,"
+ in Advances in Neural Information Processing Systems, vol. 34, 2021, pp. 8780-8794.
+
+ 3. "classifier-free": classifier-free guidance sampling by conditional DPMs.
+ The input `model` has the following format:
+ ``
+ model(x, t_input, cond, **model_kwargs) -> noise | x_start | v | score
+ ``
+ And if cond == `unconditional_condition`, the model output is the unconditional DPM output.
+
+ [4] Ho, Jonathan, and Tim Salimans. "Classifier-free diffusion guidance."
+ arXiv preprint arXiv:2207.12598 (2022).
+
+
+ The `t_input` is the time label of the model, which may be discrete-time labels (i.e. 0 to 999)
+ or continuous-time labels (i.e. epsilon to T).
+
+ We wrap the model function to accept only `x` and `t_continuous` as inputs, and outputs the predicted noise:
+ ``
+ def model_fn(x, t_continuous) -> noise:
+ t_input = get_model_input_time(t_continuous)
+ return noise_pred(model, x, t_input, **model_kwargs)
+ ``
+ where `t_continuous` is the continuous time labels (i.e. epsilon to T). And we use `model_fn` for DPM-Solver.
+
+ ===============================================================
+
+ Args:
+ model: A diffusion model with the corresponding format described above.
+ noise_schedule: A noise schedule object, such as NoiseScheduleVP.
+ model_type: A `str`. The parameterization type of the diffusion model.
+ "noise" or "x_start" or "v" or "score".
+ model_kwargs: A `dict`. A dict for the other inputs of the model function.
+ guidance_type: A `str`. The type of the guidance for sampling.
+ "uncond" or "classifier" or "classifier-free".
+ condition: A pytorch tensor. The condition for the guided sampling.
+ Only used for "classifier" or "classifier-free" guidance type.
+ unconditional_condition: A pytorch tensor. The condition for the unconditional sampling.
+ Only used for "classifier-free" guidance type.
+ guidance_scale: A `float`. The scale for the guided sampling.
+ classifier_fn: A classifier function. Only used for the classifier guidance.
+ classifier_kwargs: A `dict`. A dict for the other inputs of the classifier function.
+ Returns:
+ A noise prediction model that accepts the noised data and the continuous time as the inputs.
+ """
+
+ def get_model_input_time(t_continuous):
+ """
+ Convert the continuous-time `t_continuous` (in [epsilon, T]) to the model input time.
+ For discrete-time DPMs, we convert `t_continuous` in [1 / N, 1] to `t_input` in [0, 1000 * (N - 1) / N].
+ For continuous-time DPMs, we just use `t_continuous`.
+ """
+ if noise_schedule.schedule == 'discrete':
+ return (t_continuous - 1. / noise_schedule.total_N) * 1000.
+ else:
+ return t_continuous
+
+ def noise_pred_fn(x, t_continuous, cond=None):
+ if t_continuous.reshape((-1,)).shape[0] == 1:
+ t_continuous = t_continuous.expand((x.shape[0]))
+ t_input = get_model_input_time(t_continuous)
+ if cond is None:
+ output = model(x, t_input, None, **model_kwargs)
+ else:
+ output = model(x, t_input, cond, **model_kwargs)
+ if model_type == "noise":
+ return output
+ elif model_type == "x_start":
+ alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous)
+ dims = x.dim()
+ return (x - expand_dims(alpha_t, dims) * output) / expand_dims(sigma_t, dims)
+ elif model_type == "v":
+ alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous)
+ dims = x.dim()
+ return expand_dims(alpha_t, dims) * output + expand_dims(sigma_t, dims) * x
+ elif model_type == "score":
+ sigma_t = noise_schedule.marginal_std(t_continuous)
+ dims = x.dim()
+ return -expand_dims(sigma_t, dims) * output
+
+ def cond_grad_fn(x, t_input, condition):
+ """
+ Compute the gradient of the classifier, i.e. nabla_{x} log p_t(cond | x_t).
+ """
+ with torch.enable_grad():
+ x_in = x.detach().requires_grad_(True)
+ log_prob = classifier_fn(x_in, t_input, condition, **classifier_kwargs)
+ return torch.autograd.grad(log_prob.sum(), x_in)[0]
+
+ def model_fn(x, t_continuous, condition, unconditional_condition):
+ """
+ The noise predicition model function that is used for DPM-Solver.
+ """
+ if t_continuous.reshape((-1,)).shape[0] == 1:
+ t_continuous = t_continuous.expand((x.shape[0]))
+ if guidance_type == "uncond":
+ return noise_pred_fn(x, t_continuous)
+ elif guidance_type == "classifier":
+ assert classifier_fn is not None
+ t_input = get_model_input_time(t_continuous)
+ cond_grad = cond_grad_fn(x, t_input, condition)
+ sigma_t = noise_schedule.marginal_std(t_continuous)
+ noise = noise_pred_fn(x, t_continuous)
+ return noise - guidance_scale * expand_dims(sigma_t, dims=cond_grad.dim()) * cond_grad
+ elif guidance_type == "classifier-free":
+ if guidance_scale == 1. or unconditional_condition is None:
+ return noise_pred_fn(x, t_continuous, cond=condition)
+ else:
+ x_in = torch.cat([x] * 2)
+ t_in = torch.cat([t_continuous] * 2)
+ if isinstance(condition, dict):
+ assert isinstance(unconditional_condition, dict)
+ c_in = dict()
+ for k in condition:
+ if isinstance(condition[k], list):
+ c_in[k] = [torch.cat([
+ unconditional_condition[k][i],
+ condition[k][i]]) for i in range(len(condition[k]))]
+ else:
+ c_in[k] = torch.cat([
+ unconditional_condition[k],
+ condition[k]])
+ elif isinstance(condition, list):
+ c_in = list()
+ assert isinstance(unconditional_condition, list)
+ for i in range(len(condition)):
+ c_in.append(torch.cat([unconditional_condition[i], condition[i]]))
+ else:
+ c_in = torch.cat([unconditional_condition, condition])
+ noise_uncond, noise = noise_pred_fn(x_in, t_in, cond=c_in).chunk(2)
+ return noise_uncond + guidance_scale * (noise - noise_uncond)
+
+ assert model_type in ["noise", "x_start", "v"]
+ assert guidance_type in ["uncond", "classifier", "classifier-free"]
+ return model_fn
+
+
+class UniPC:
+ def __init__(
+ self,
+ model_fn,
+ noise_schedule,
+ predict_x0=True,
+ thresholding=False,
+ max_val=1.,
+ variant='bh1',
+ condition=None,
+ unconditional_condition=None,
+ before_sample=None,
+ after_sample=None,
+ after_update=None
+ ):
+ """Construct a UniPC.
+
+ We support both data_prediction and noise_prediction.
+ """
+ self.model_fn_ = model_fn
+ self.noise_schedule = noise_schedule
+ self.variant = variant
+ self.predict_x0 = predict_x0
+ self.thresholding = thresholding
+ self.max_val = max_val
+ self.condition = condition
+ self.unconditional_condition = unconditional_condition
+ self.before_sample = before_sample
+ self.after_sample = after_sample
+ self.after_update = after_update
+
+ def dynamic_thresholding_fn(self, x0, t=None):
+ """
+ The dynamic thresholding method.
+ """
+ dims = x0.dim()
+ p = self.dynamic_thresholding_ratio
+ s = torch.quantile(torch.abs(x0).reshape((x0.shape[0], -1)), p, dim=1)
+ s = expand_dims(torch.maximum(s, self.thresholding_max_val * torch.ones_like(s).to(s.device)), dims)
+ x0 = torch.clamp(x0, -s, s) / s
+ return x0
+
+ def model(self, x, t):
+ cond = self.condition
+ uncond = self.unconditional_condition
+ if self.before_sample is not None:
+ x, t, cond, uncond = self.before_sample(x, t, cond, uncond)
+ res = self.model_fn_(x, t, cond, uncond)
+ if self.after_sample is not None:
+ x, t, cond, uncond, res = self.after_sample(x, t, cond, uncond, res)
+
+ if isinstance(res, tuple):
+ # (None, pred_x0)
+ res = res[1]
+
+ return res
+
+ def noise_prediction_fn(self, x, t):
+ """
+ Return the noise prediction model.
+ """
+ return self.model(x, t)
+
+ def data_prediction_fn(self, x, t):
+ """
+ Return the data prediction model (with thresholding).
+ """
+ noise = self.noise_prediction_fn(x, t)
+ dims = x.dim()
+ alpha_t, sigma_t = self.noise_schedule.marginal_alpha(t), self.noise_schedule.marginal_std(t)
+ x0 = (x - expand_dims(sigma_t, dims) * noise) / expand_dims(alpha_t, dims)
+ if self.thresholding:
+ p = 0.995 # A hyperparameter in the paper of "Imagen" [1].
+ s = torch.quantile(torch.abs(x0).reshape((x0.shape[0], -1)), p, dim=1)
+ s = expand_dims(torch.maximum(s, self.max_val * torch.ones_like(s).to(s.device)), dims)
+ x0 = torch.clamp(x0, -s, s) / s
+ return x0
+
+ def model_fn(self, x, t):
+ """
+ Convert the model to the noise prediction model or the data prediction model.
+ """
+ if self.predict_x0:
+ return self.data_prediction_fn(x, t)
+ else:
+ return self.noise_prediction_fn(x, t)
+
+ def get_time_steps(self, skip_type, t_T, t_0, N, device):
+ """Compute the intermediate time steps for sampling.
+ """
+ if skip_type == 'logSNR':
+ lambda_T = self.noise_schedule.marginal_lambda(torch.tensor(t_T).to(device))
+ lambda_0 = self.noise_schedule.marginal_lambda(torch.tensor(t_0).to(device))
+ logSNR_steps = torch.linspace(lambda_T.cpu().item(), lambda_0.cpu().item(), N + 1).to(device)
+ return self.noise_schedule.inverse_lambda(logSNR_steps)
+ elif skip_type == 'time_uniform':
+ return torch.linspace(t_T, t_0, N + 1).to(device)
+ elif skip_type == 'time_quadratic':
+ t_order = 2
+ t = torch.linspace(t_T**(1. / t_order), t_0**(1. / t_order), N + 1).pow(t_order).to(device)
+ return t
+ else:
+ raise ValueError("Unsupported skip_type {}, need to be 'logSNR' or 'time_uniform' or 'time_quadratic'".format(skip_type))
+
+ def get_orders_and_timesteps_for_singlestep_solver(self, steps, order, skip_type, t_T, t_0, device):
+ """
+ Get the order of each step for sampling by the singlestep DPM-Solver.
+ """
+ if order == 3:
+ K = steps // 3 + 1
+ if steps % 3 == 0:
+ orders = [3,] * (K - 2) + [2, 1]
+ elif steps % 3 == 1:
+ orders = [3,] * (K - 1) + [1]
+ else:
+ orders = [3,] * (K - 1) + [2]
+ elif order == 2:
+ if steps % 2 == 0:
+ K = steps // 2
+ orders = [2,] * K
+ else:
+ K = steps // 2 + 1
+ orders = [2,] * (K - 1) + [1]
+ elif order == 1:
+ K = steps
+ orders = [1,] * steps
+ else:
+ raise ValueError("'order' must be '1' or '2' or '3'.")
+ if skip_type == 'logSNR':
+ # To reproduce the results in DPM-Solver paper
+ timesteps_outer = self.get_time_steps(skip_type, t_T, t_0, K, device)
+ else:
+ timesteps_outer = self.get_time_steps(skip_type, t_T, t_0, steps, device)[torch.cumsum(torch.tensor([0,] + orders), 0).to(device)]
+ return timesteps_outer, orders
+
+ def denoise_to_zero_fn(self, x, s):
+ """
+ Denoise at the final step, which is equivalent to solve the ODE from lambda_s to infty by first-order discretization.
+ """
+ return self.data_prediction_fn(x, s)
+
+ def multistep_uni_pc_update(self, x, model_prev_list, t_prev_list, t, order, **kwargs):
+ if len(t.shape) == 0:
+ t = t.view(-1)
+ if 'bh' in self.variant:
+ return self.multistep_uni_pc_bh_update(x, model_prev_list, t_prev_list, t, order, **kwargs)
+ else:
+ assert self.variant == 'vary_coeff'
+ return self.multistep_uni_pc_vary_update(x, model_prev_list, t_prev_list, t, order, **kwargs)
+
+ def multistep_uni_pc_vary_update(self, x, model_prev_list, t_prev_list, t, order, use_corrector=True):
+ #print(f'using unified predictor-corrector with order {order} (solver type: vary coeff)')
+ ns = self.noise_schedule
+ assert order <= len(model_prev_list)
+
+ # first compute rks
+ t_prev_0 = t_prev_list[-1]
+ lambda_prev_0 = ns.marginal_lambda(t_prev_0)
+ lambda_t = ns.marginal_lambda(t)
+ model_prev_0 = model_prev_list[-1]
+ sigma_prev_0, sigma_t = ns.marginal_std(t_prev_0), ns.marginal_std(t)
+ log_alpha_t = ns.marginal_log_mean_coeff(t)
+ alpha_t = torch.exp(log_alpha_t)
+
+ h = lambda_t - lambda_prev_0
+
+ rks = []
+ D1s = []
+ for i in range(1, order):
+ t_prev_i = t_prev_list[-(i + 1)]
+ model_prev_i = model_prev_list[-(i + 1)]
+ lambda_prev_i = ns.marginal_lambda(t_prev_i)
+ rk = (lambda_prev_i - lambda_prev_0) / h
+ rks.append(rk)
+ D1s.append((model_prev_i - model_prev_0) / rk)
+
+ rks.append(1.)
+ rks = torch.tensor(rks, device=x.device)
+
+ K = len(rks)
+ # build C matrix
+ C = []
+
+ col = torch.ones_like(rks)
+ for k in range(1, K + 1):
+ C.append(col)
+ col = col * rks / (k + 1)
+ C = torch.stack(C, dim=1)
+
+ if len(D1s) > 0:
+ D1s = torch.stack(D1s, dim=1) # (B, K)
+ C_inv_p = torch.linalg.inv(C[:-1, :-1])
+ A_p = C_inv_p
+
+ if use_corrector:
+ #print('using corrector')
+ C_inv = torch.linalg.inv(C)
+ A_c = C_inv
+
+ hh = -h if self.predict_x0 else h
+ h_phi_1 = torch.expm1(hh)
+ h_phi_ks = []
+ factorial_k = 1
+ h_phi_k = h_phi_1
+ for k in range(1, K + 2):
+ h_phi_ks.append(h_phi_k)
+ h_phi_k = h_phi_k / hh - 1 / factorial_k
+ factorial_k *= (k + 1)
+
+ model_t = None
+ if self.predict_x0:
+ x_t_ = (
+ sigma_t / sigma_prev_0 * x
+ - alpha_t * h_phi_1 * model_prev_0
+ )
+ # now predictor
+ x_t = x_t_
+ if len(D1s) > 0:
+ # compute the residuals for predictor
+ for k in range(K - 1):
+ x_t = x_t - alpha_t * h_phi_ks[k + 1] * torch.einsum('bkchw,k->bchw', D1s, A_p[k])
+ # now corrector
+ if use_corrector:
+ model_t = self.model_fn(x_t, t)
+ D1_t = (model_t - model_prev_0)
+ x_t = x_t_
+ k = 0
+ for k in range(K - 1):
+ x_t = x_t - alpha_t * h_phi_ks[k + 1] * torch.einsum('bkchw,k->bchw', D1s, A_c[k][:-1])
+ x_t = x_t - alpha_t * h_phi_ks[K] * (D1_t * A_c[k][-1])
+ else:
+ log_alpha_prev_0, log_alpha_t = ns.marginal_log_mean_coeff(t_prev_0), ns.marginal_log_mean_coeff(t)
+ x_t_ = (
+ (torch.exp(log_alpha_t - log_alpha_prev_0)) * x
+ - (sigma_t * h_phi_1) * model_prev_0
+ )
+ # now predictor
+ x_t = x_t_
+ if len(D1s) > 0:
+ # compute the residuals for predictor
+ for k in range(K - 1):
+ x_t = x_t - sigma_t * h_phi_ks[k + 1] * torch.einsum('bkchw,k->bchw', D1s, A_p[k])
+ # now corrector
+ if use_corrector:
+ model_t = self.model_fn(x_t, t)
+ D1_t = (model_t - model_prev_0)
+ x_t = x_t_
+ k = 0
+ for k in range(K - 1):
+ x_t = x_t - sigma_t * h_phi_ks[k + 1] * torch.einsum('bkchw,k->bchw', D1s, A_c[k][:-1])
+ x_t = x_t - sigma_t * h_phi_ks[K] * (D1_t * A_c[k][-1])
+ return x_t, model_t
+
+ def multistep_uni_pc_bh_update(self, x, model_prev_list, t_prev_list, t, order, x_t=None, use_corrector=True):
+ #print(f'using unified predictor-corrector with order {order} (solver type: B(h))')
+ ns = self.noise_schedule
+ assert order <= len(model_prev_list)
+ dims = x.dim()
+
+ # first compute rks
+ t_prev_0 = t_prev_list[-1]
+ lambda_prev_0 = ns.marginal_lambda(t_prev_0)
+ lambda_t = ns.marginal_lambda(t)
+ model_prev_0 = model_prev_list[-1]
+ sigma_prev_0, sigma_t = ns.marginal_std(t_prev_0), ns.marginal_std(t)
+ log_alpha_prev_0, log_alpha_t = ns.marginal_log_mean_coeff(t_prev_0), ns.marginal_log_mean_coeff(t)
+ alpha_t = torch.exp(log_alpha_t)
+
+ h = lambda_t - lambda_prev_0
+
+ rks = []
+ D1s = []
+ for i in range(1, order):
+ t_prev_i = t_prev_list[-(i + 1)]
+ model_prev_i = model_prev_list[-(i + 1)]
+ lambda_prev_i = ns.marginal_lambda(t_prev_i)
+ rk = ((lambda_prev_i - lambda_prev_0) / h)[0]
+ rks.append(rk)
+ D1s.append((model_prev_i - model_prev_0) / rk)
+
+ rks.append(1.)
+ rks = torch.tensor(rks, device=x.device)
+
+ R = []
+ b = []
+
+ hh = -h[0] if self.predict_x0 else h[0]
+ h_phi_1 = torch.expm1(hh) # h\phi_1(h) = e^h - 1
+ h_phi_k = h_phi_1 / hh - 1
+
+ factorial_i = 1
+
+ if self.variant == 'bh1':
+ B_h = hh
+ elif self.variant == 'bh2':
+ B_h = torch.expm1(hh)
+ else:
+ raise NotImplementedError()
+
+ for i in range(1, order + 1):
+ R.append(torch.pow(rks, i - 1))
+ b.append(h_phi_k * factorial_i / B_h)
+ factorial_i *= (i + 1)
+ h_phi_k = h_phi_k / hh - 1 / factorial_i
+
+ R = torch.stack(R)
+ b = torch.tensor(b, device=x.device)
+
+ # now predictor
+ use_predictor = len(D1s) > 0 and x_t is None
+ if len(D1s) > 0:
+ D1s = torch.stack(D1s, dim=1) # (B, K)
+ if x_t is None:
+ # for order 2, we use a simplified version
+ if order == 2:
+ rhos_p = torch.tensor([0.5], device=b.device)
+ else:
+ rhos_p = torch.linalg.solve(R[:-1, :-1], b[:-1])
+ else:
+ D1s = None
+
+ if use_corrector:
+ #print('using corrector')
+ # for order 1, we use a simplified version
+ if order == 1:
+ rhos_c = torch.tensor([0.5], device=b.device)
+ else:
+ rhos_c = torch.linalg.solve(R, b)
+
+ model_t = None
+ if self.predict_x0:
+ x_t_ = (
+ expand_dims(sigma_t / sigma_prev_0, dims) * x
+ - expand_dims(alpha_t * h_phi_1, dims)* model_prev_0
+ )
+
+ if x_t is None:
+ if use_predictor:
+ pred_res = torch.einsum('k,bkchw->bchw', rhos_p, D1s)
+ else:
+ pred_res = 0
+ x_t = x_t_ - expand_dims(alpha_t * B_h, dims) * pred_res
+
+ if use_corrector:
+ model_t = self.model_fn(x_t, t)
+ if D1s is not None:
+ corr_res = torch.einsum('k,bkchw->bchw', rhos_c[:-1], D1s)
+ else:
+ corr_res = 0
+ D1_t = (model_t - model_prev_0)
+ x_t = x_t_ - expand_dims(alpha_t * B_h, dims) * (corr_res + rhos_c[-1] * D1_t)
+ else:
+ x_t_ = (
+ expand_dims(torch.exp(log_alpha_t - log_alpha_prev_0), dimss) * x
+ - expand_dims(sigma_t * h_phi_1, dims) * model_prev_0
+ )
+ if x_t is None:
+ if use_predictor:
+ pred_res = torch.einsum('k,bkchw->bchw', rhos_p, D1s)
+ else:
+ pred_res = 0
+ x_t = x_t_ - expand_dims(sigma_t * B_h, dims) * pred_res
+
+ if use_corrector:
+ model_t = self.model_fn(x_t, t)
+ if D1s is not None:
+ corr_res = torch.einsum('k,bkchw->bchw', rhos_c[:-1], D1s)
+ else:
+ corr_res = 0
+ D1_t = (model_t - model_prev_0)
+ x_t = x_t_ - expand_dims(sigma_t * B_h, dims) * (corr_res + rhos_c[-1] * D1_t)
+ return x_t, model_t
+
+
+ def sample(self, x, steps=20, t_start=None, t_end=None, order=3, skip_type='time_uniform',
+ method='singlestep', lower_order_final=True, denoise_to_zero=False, solver_type='dpm_solver',
+ atol=0.0078, rtol=0.05, corrector=False,
+ ):
+ t_0 = 1. / self.noise_schedule.total_N if t_end is None else t_end
+ t_T = self.noise_schedule.T if t_start is None else t_start
+ device = x.device
+ if method == 'multistep':
+ assert steps >= order, "UniPC order must be < sampling steps"
+ timesteps = self.get_time_steps(skip_type=skip_type, t_T=t_T, t_0=t_0, N=steps, device=device)
+ print(f"Running UniPC Sampling with {timesteps.shape[0]} timesteps, order {order}")
+ assert timesteps.shape[0] - 1 == steps
+ with torch.no_grad():
+ vec_t = timesteps[0].expand((x.shape[0]))
+ model_prev_list = [self.model_fn(x, vec_t)]
+ t_prev_list = [vec_t]
+ # Init the first `order` values by lower order multistep DPM-Solver.
+ for init_order in range(1, order):
+ vec_t = timesteps[init_order].expand(x.shape[0])
+ x, model_x = self.multistep_uni_pc_update(x, model_prev_list, t_prev_list, vec_t, init_order, use_corrector=True)
+ if model_x is None:
+ model_x = self.model_fn(x, vec_t)
+ if self.after_update is not None:
+ self.after_update(x, model_x)
+ model_prev_list.append(model_x)
+ t_prev_list.append(vec_t)
+ for step in range(order, steps + 1):
+ vec_t = timesteps[step].expand(x.shape[0])
+ if lower_order_final:
+ step_order = min(order, steps + 1 - step)
+ else:
+ step_order = order
+ #print('this step order:', step_order)
+ if step == steps:
+ #print('do not run corrector at the last step')
+ use_corrector = False
+ else:
+ use_corrector = True
+ x, model_x = self.multistep_uni_pc_update(x, model_prev_list, t_prev_list, vec_t, step_order, use_corrector=use_corrector)
+ if self.after_update is not None:
+ self.after_update(x, model_x)
+ for i in range(order - 1):
+ t_prev_list[i] = t_prev_list[i + 1]
+ model_prev_list[i] = model_prev_list[i + 1]
+ t_prev_list[-1] = vec_t
+ # We do not need to evaluate the final model value.
+ if step < steps:
+ if model_x is None:
+ model_x = self.model_fn(x, vec_t)
+ model_prev_list[-1] = model_x
+ else:
+ raise NotImplementedError()
+ if denoise_to_zero:
+ x = self.denoise_to_zero_fn(x, torch.ones((x.shape[0],)).to(device) * t_0)
+ return x
+
+
+#############################################################
+# other utility functions
+#############################################################
+
+def interpolate_fn(x, xp, yp):
+ """
+ A piecewise linear function y = f(x), using xp and yp as keypoints.
+ We implement f(x) in a differentiable way (i.e. applicable for autograd).
+ The function f(x) is well-defined for all x-axis. (For x beyond the bounds of xp, we use the outmost points of xp to define the linear function.)
+
+ Args:
+ x: PyTorch tensor with shape [N, C], where N is the batch size, C is the number of channels (we use C = 1 for DPM-Solver).
+ xp: PyTorch tensor with shape [C, K], where K is the number of keypoints.
+ yp: PyTorch tensor with shape [C, K].
+ Returns:
+ The function values f(x), with shape [N, C].
+ """
+ N, K = x.shape[0], xp.shape[1]
+ all_x = torch.cat([x.unsqueeze(2), xp.unsqueeze(0).repeat((N, 1, 1))], dim=2)
+ sorted_all_x, x_indices = torch.sort(all_x, dim=2)
+ x_idx = torch.argmin(x_indices, dim=2)
+ cand_start_idx = x_idx - 1
+ start_idx = torch.where(
+ torch.eq(x_idx, 0),
+ torch.tensor(1, device=x.device),
+ torch.where(
+ torch.eq(x_idx, K), torch.tensor(K - 2, device=x.device), cand_start_idx,
+ ),
+ )
+ end_idx = torch.where(torch.eq(start_idx, cand_start_idx), start_idx + 2, start_idx + 1)
+ start_x = torch.gather(sorted_all_x, dim=2, index=start_idx.unsqueeze(2)).squeeze(2)
+ end_x = torch.gather(sorted_all_x, dim=2, index=end_idx.unsqueeze(2)).squeeze(2)
+ start_idx2 = torch.where(
+ torch.eq(x_idx, 0),
+ torch.tensor(0, device=x.device),
+ torch.where(
+ torch.eq(x_idx, K), torch.tensor(K - 2, device=x.device), cand_start_idx,
+ ),
+ )
+ y_positions_expanded = yp.unsqueeze(0).expand(N, -1, -1)
+ start_y = torch.gather(y_positions_expanded, dim=2, index=start_idx2.unsqueeze(2)).squeeze(2)
+ end_y = torch.gather(y_positions_expanded, dim=2, index=(start_idx2 + 1).unsqueeze(2)).squeeze(2)
+ cand = start_y + (x - start_x) * (end_y - start_y) / (end_x - start_x)
+ return cand
+
+
+def expand_dims(v, dims):
+ """
+ Expand the tensor `v` to the dim `dims`.
+
+ Args:
+ `v`: a PyTorch tensor with shape [N].
+ `dim`: a `int`.
+ Returns:
+ a PyTorch tensor with shape [N, 1, 1, ..., 1] and the total dimension is `dims`.
+ """
+ return v[(...,) + (None,)*(dims - 1)]
diff --git a/modules/processing.py b/modules/processing.py
index 2009d3bf..0b2f7e60 100644
--- a/modules/processing.py
+++ b/modules/processing.py
@@ -888,7 +888,9 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
shared.state.nextjob()
- img2img_sampler_name = self.sampler_name if self.sampler_name != 'PLMS' else 'DDIM' # PLMS does not support img2img so we just silently switch ot DDIM
+ img2img_sampler_name = self.sampler_name
+ if self.sampler_name in ['PLMS', 'UniPC']: # PLMS/UniPC do not support img2img so we just silently switch to DDIM
+ img2img_sampler_name = 'DDIM'
self.sampler = sd_samplers.create_sampler(img2img_sampler_name, self.sd_model)
samples = samples[:, :, self.truncate_y//2:samples.shape[2]-(self.truncate_y+1)//2, self.truncate_x//2:samples.shape[3]-(self.truncate_x+1)//2]
diff --git a/modules/sd_samplers.py b/modules/sd_samplers.py
index 28c2136f..ff361f22 100644
--- a/modules/sd_samplers.py
+++ b/modules/sd_samplers.py
@@ -32,7 +32,7 @@ def set_samplers():
global samplers, samplers_for_img2img
hidden = set(shared.opts.hide_samplers)
- hidden_img2img = set(shared.opts.hide_samplers + ['PLMS'])
+ hidden_img2img = set(shared.opts.hide_samplers + ['PLMS', 'UniPC'])
samplers = [x for x in all_samplers if x.name not in hidden]
samplers_for_img2img = [x for x in all_samplers if x.name not in hidden_img2img]
diff --git a/modules/sd_samplers_compvis.py b/modules/sd_samplers_compvis.py
index d03131cd..7d07c4a5 100644
--- a/modules/sd_samplers_compvis.py
+++ b/modules/sd_samplers_compvis.py
@@ -7,19 +7,27 @@ import torch
from modules.shared import state
from modules import sd_samplers_common, prompt_parser, shared
+import modules.models.diffusion.uni_pc
samplers_data_compvis = [
sd_samplers_common.SamplerData('DDIM', lambda model: VanillaStableDiffusionSampler(ldm.models.diffusion.ddim.DDIMSampler, model), [], {}),
sd_samplers_common.SamplerData('PLMS', lambda model: VanillaStableDiffusionSampler(ldm.models.diffusion.plms.PLMSSampler, model), [], {}),
+ sd_samplers_common.SamplerData('UniPC', lambda model: VanillaStableDiffusionSampler(modules.models.diffusion.uni_pc.UniPCSampler, model), [], {}),
]
class VanillaStableDiffusionSampler:
def __init__(self, constructor, sd_model):
self.sampler = constructor(sd_model)
+ self.is_ddim = hasattr(self.sampler, 'p_sample_ddim')
self.is_plms = hasattr(self.sampler, 'p_sample_plms')
- self.orig_p_sample_ddim = self.sampler.p_sample_plms if self.is_plms else self.sampler.p_sample_ddim
+ self.is_unipc = isinstance(self.sampler, modules.models.diffusion.uni_pc.UniPCSampler)
+ self.orig_p_sample_ddim = None
+ if self.is_plms:
+ self.orig_p_sample_ddim = self.sampler.p_sample_plms
+ elif self.is_ddim:
+ self.orig_p_sample_ddim = self.sampler.p_sample_ddim
self.mask = None
self.nmask = None
self.init_latent = None
@@ -45,6 +53,15 @@ class VanillaStableDiffusionSampler:
return self.last_latent
def p_sample_ddim_hook(self, x_dec, cond, ts, unconditional_conditioning, *args, **kwargs):
+ x_dec, ts, cond, unconditional_conditioning = self.before_sample(x_dec, ts, cond, unconditional_conditioning)
+
+ res = self.orig_p_sample_ddim(x_dec, cond, ts, unconditional_conditioning=unconditional_conditioning, *args, **kwargs)
+
+ x_dec, ts, cond, unconditional_conditioning, res = self.after_sample(x_dec, ts, cond, unconditional_conditioning, res)
+
+ return res
+
+ def before_sample(self, x, ts, cond, unconditional_conditioning):
if state.interrupted or state.skipped:
raise sd_samplers_common.InterruptedException
@@ -76,7 +93,7 @@ class VanillaStableDiffusionSampler:
if self.mask is not None:
img_orig = self.sampler.model.q_sample(self.init_latent, ts)
- x_dec = img_orig * self.mask + self.nmask * x_dec
+ x = img_orig * self.mask + self.nmask * x
# Wrap the image conditioning back up since the DDIM code can accept the dict directly.
# Note that they need to be lists because it just concatenates them later.
@@ -84,12 +101,13 @@ class VanillaStableDiffusionSampler:
cond = {"c_concat": [image_conditioning], "c_crossattn": [cond]}
unconditional_conditioning = {"c_concat": [image_conditioning], "c_crossattn": [unconditional_conditioning]}
- res = self.orig_p_sample_ddim(x_dec, cond, ts, unconditional_conditioning=unconditional_conditioning, *args, **kwargs)
+ return x, ts, cond, unconditional_conditioning
+ def update_step(self, last_latent):
if self.mask is not None:
- self.last_latent = self.init_latent * self.mask + self.nmask * res[1]
+ self.last_latent = self.init_latent * self.mask + self.nmask * last_latent
else:
- self.last_latent = res[1]
+ self.last_latent = last_latent
sd_samplers_common.store_latent(self.last_latent)
@@ -97,7 +115,14 @@ class VanillaStableDiffusionSampler:
state.sampling_step = self.step
shared.total_tqdm.update()
- return res
+ def after_sample(self, x, ts, cond, uncond, res):
+ if not self.is_unipc:
+ self.update_step(res[1])
+
+ return x, ts, cond, uncond, res
+
+ def unipc_after_update(self, x, model_x):
+ self.update_step(x)
def initialize(self, p):
self.eta = p.eta if p.eta is not None else shared.opts.eta_ddim
@@ -107,16 +132,20 @@ class VanillaStableDiffusionSampler:
for fieldname in ['p_sample_ddim', 'p_sample_plms']:
if hasattr(self.sampler, fieldname):
setattr(self.sampler, fieldname, self.p_sample_ddim_hook)
+ if self.is_unipc:
+ self.sampler.set_hooks(lambda x, t, c, u: self.before_sample(x, t, c, u), lambda x, t, c, u, r: self.after_sample(x, t, c, u, r), lambda x, mx: self.unipc_after_update(x, mx))
self.mask = p.mask if hasattr(p, 'mask') else None
self.nmask = p.nmask if hasattr(p, 'nmask') else None
def adjust_steps_if_invalid(self, p, num_steps):
- if (self.config.name == 'DDIM' and p.ddim_discretize == 'uniform') or (self.config.name == 'PLMS'):
+ if ((self.config.name == 'DDIM') and p.ddim_discretize == 'uniform') or (self.config.name == 'PLMS') or (self.config.name == 'UniPC'):
+ if self.config.name == 'UniPC' and num_steps < shared.opts.uni_pc_order:
+ num_steps = shared.opts.uni_pc_order
valid_step = 999 / (1000 // num_steps)
if valid_step == math.floor(valid_step):
return int(valid_step) + 1
-
+
return num_steps
def sample_img2img(self, p, x, noise, conditioning, unconditional_conditioning, steps=None, image_conditioning=None):
diff --git a/modules/shared.py b/modules/shared.py
index 805f9cc1..29f8dccb 100644
--- a/modules/shared.py
+++ b/modules/shared.py
@@ -485,6 +485,10 @@ options_templates.update(options_section(('sampler-params', "Sampler parameters"
's_noise': OptionInfo(1.0, "sigma noise", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
'eta_noise_seed_delta': OptionInfo(0, "Eta noise seed delta", gr.Number, {"precision": 0}),
'always_discard_next_to_last_sigma': OptionInfo(False, "Always discard next-to-last sigma"),
+ 'uni_pc_variant': OptionInfo("bh1", "UniPC variant", gr.Radio, {"choices": ["bh1", "bh2", "vary_coeff"]}),
+ 'uni_pc_skip_type': OptionInfo("time_uniform", "UniPC skip type", gr.Radio, {"choices": ["time_uniform", "time_quadratic", "logSNR"]}),
+ 'uni_pc_order': OptionInfo(3, "UniPC order (must be < sampling steps)", gr.Slider, {"minimum": 1, "maximum": 50, "step": 1}),
+ 'uni_pc_lower_order_final': OptionInfo(True, "UniPC lower order final"),
}))
options_templates.update(options_section(('postprocessing', "Postprocessing"), {
diff --git a/scripts/xyz_grid.py b/scripts/xyz_grid.py
index 53511b12..8e822e16 100644
--- a/scripts/xyz_grid.py
+++ b/scripts/xyz_grid.py
@@ -128,6 +128,10 @@ def apply_styles(p: StableDiffusionProcessingTxt2Img, x: str, _):
p.styles.extend(x.split(','))
+def apply_uni_pc_order(p, x, xs):
+ opts.data["uni_pc_order"] = min(x, p.steps - 1)
+
+
def format_value_add_label(p, opt, x):
if type(x) == float:
x = round(x, 8)
@@ -205,6 +209,7 @@ axis_options = [
AxisOptionImg2Img("Cond. Image Mask Weight", float, apply_field("inpainting_mask_weight")),
AxisOption("VAE", str, apply_vae, cost=0.7, choices=lambda: list(sd_vae.vae_dict)),
AxisOption("Styles", str, apply_styles, choices=lambda: list(shared.prompt_styles.styles)),
+ AxisOption("UniPC Order", int, apply_uni_pc_order, cost=0.5),
]
@@ -316,9 +321,11 @@ class SharedSettingsStackHelper(object):
def __enter__(self):
self.CLIP_stop_at_last_layers = opts.CLIP_stop_at_last_layers
self.vae = opts.sd_vae
+ self.uni_pc_order = opts.uni_pc_order
def __exit__(self, exc_type, exc_value, tb):
opts.data["sd_vae"] = self.vae
+ opts.data["uni_pc_order"] = self.uni_pc_order
modules.sd_models.reload_model_weights()
modules.sd_vae.reload_vae_weights()
diff --git a/test/basic_features/txt2img_test.py b/test/basic_features/txt2img_test.py
index 5aa43a44..cb525fbb 100644
--- a/test/basic_features/txt2img_test.py
+++ b/test/basic_features/txt2img_test.py
@@ -66,6 +66,8 @@ class TestTxt2ImgWorking(unittest.TestCase):
self.assertEqual(requests.post(self.url_txt2img, json=self.simple_txt2img).status_code, 200)
self.simple_txt2img["sampler_index"] = "DDIM"
self.assertEqual(requests.post(self.url_txt2img, json=self.simple_txt2img).status_code, 200)
+ self.simple_txt2img["sampler_index"] = "UniPC"
+ self.assertEqual(requests.post(self.url_txt2img, json=self.simple_txt2img).status_code, 200)
def test_txt2img_multiple_batches_performed(self):
self.simple_txt2img["n_iter"] = 2