aboutsummaryrefslogtreecommitdiff
path: root/modules/codeformer
diff options
context:
space:
mode:
Diffstat (limited to 'modules/codeformer')
-rw-r--r--modules/codeformer/codeformer_arch.py276
-rw-r--r--modules/codeformer/vqgan_arch.py435
2 files changed, 0 insertions, 711 deletions
diff --git a/modules/codeformer/codeformer_arch.py b/modules/codeformer/codeformer_arch.py
deleted file mode 100644
index 12db6814..00000000
--- a/modules/codeformer/codeformer_arch.py
+++ /dev/null
@@ -1,276 +0,0 @@
-# this file is copied from CodeFormer repository. Please see comment in modules/codeformer_model.py
-
-import math
-import torch
-from torch import nn, Tensor
-import torch.nn.functional as F
-from typing import Optional
-
-from modules.codeformer.vqgan_arch import VQAutoEncoder, ResBlock
-from basicsr.utils.registry import ARCH_REGISTRY
-
-def calc_mean_std(feat, eps=1e-5):
- """Calculate mean and std for adaptive_instance_normalization.
-
- Args:
- feat (Tensor): 4D tensor.
- eps (float): A small value added to the variance to avoid
- divide-by-zero. Default: 1e-5.
- """
- size = feat.size()
- assert len(size) == 4, 'The input feature should be 4D tensor.'
- b, c = size[:2]
- feat_var = feat.view(b, c, -1).var(dim=2) + eps
- feat_std = feat_var.sqrt().view(b, c, 1, 1)
- feat_mean = feat.view(b, c, -1).mean(dim=2).view(b, c, 1, 1)
- return feat_mean, feat_std
-
-
-def adaptive_instance_normalization(content_feat, style_feat):
- """Adaptive instance normalization.
-
- Adjust the reference features to have the similar color and illuminations
- as those in the degradate features.
-
- Args:
- content_feat (Tensor): The reference feature.
- style_feat (Tensor): The degradate features.
- """
- size = content_feat.size()
- style_mean, style_std = calc_mean_std(style_feat)
- content_mean, content_std = calc_mean_std(content_feat)
- normalized_feat = (content_feat - content_mean.expand(size)) / content_std.expand(size)
- return normalized_feat * style_std.expand(size) + style_mean.expand(size)
-
-
-class PositionEmbeddingSine(nn.Module):
- """
- This is a more standard version of the position embedding, very similar to the one
- used by the Attention is all you need paper, generalized to work on images.
- """
-
- def __init__(self, num_pos_feats=64, temperature=10000, normalize=False, scale=None):
- super().__init__()
- self.num_pos_feats = num_pos_feats
- self.temperature = temperature
- self.normalize = normalize
- if scale is not None and normalize is False:
- raise ValueError("normalize should be True if scale is passed")
- if scale is None:
- scale = 2 * math.pi
- self.scale = scale
-
- def forward(self, x, mask=None):
- if mask is None:
- mask = torch.zeros((x.size(0), x.size(2), x.size(3)), device=x.device, dtype=torch.bool)
- not_mask = ~mask
- y_embed = not_mask.cumsum(1, dtype=torch.float32)
- x_embed = not_mask.cumsum(2, dtype=torch.float32)
- if self.normalize:
- eps = 1e-6
- y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale
- x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale
-
- dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device)
- dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats)
-
- pos_x = x_embed[:, :, :, None] / dim_t
- pos_y = y_embed[:, :, :, None] / dim_t
- pos_x = torch.stack(
- (pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4
- ).flatten(3)
- pos_y = torch.stack(
- (pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4
- ).flatten(3)
- pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2)
- return pos
-
-def _get_activation_fn(activation):
- """Return an activation function given a string"""
- if activation == "relu":
- return F.relu
- if activation == "gelu":
- return F.gelu
- if activation == "glu":
- return F.glu
- raise RuntimeError(F"activation should be relu/gelu, not {activation}.")
-
-
-class TransformerSALayer(nn.Module):
- def __init__(self, embed_dim, nhead=8, dim_mlp=2048, dropout=0.0, activation="gelu"):
- super().__init__()
- self.self_attn = nn.MultiheadAttention(embed_dim, nhead, dropout=dropout)
- # Implementation of Feedforward model - MLP
- self.linear1 = nn.Linear(embed_dim, dim_mlp)
- self.dropout = nn.Dropout(dropout)
- self.linear2 = nn.Linear(dim_mlp, embed_dim)
-
- self.norm1 = nn.LayerNorm(embed_dim)
- self.norm2 = nn.LayerNorm(embed_dim)
- self.dropout1 = nn.Dropout(dropout)
- self.dropout2 = nn.Dropout(dropout)
-
- self.activation = _get_activation_fn(activation)
-
- def with_pos_embed(self, tensor, pos: Optional[Tensor]):
- return tensor if pos is None else tensor + pos
-
- def forward(self, tgt,
- tgt_mask: Optional[Tensor] = None,
- tgt_key_padding_mask: Optional[Tensor] = None,
- query_pos: Optional[Tensor] = None):
-
- # self attention
- tgt2 = self.norm1(tgt)
- q = k = self.with_pos_embed(tgt2, query_pos)
- tgt2 = self.self_attn(q, k, value=tgt2, attn_mask=tgt_mask,
- key_padding_mask=tgt_key_padding_mask)[0]
- tgt = tgt + self.dropout1(tgt2)
-
- # ffn
- tgt2 = self.norm2(tgt)
- tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt2))))
- tgt = tgt + self.dropout2(tgt2)
- return tgt
-
-class Fuse_sft_block(nn.Module):
- def __init__(self, in_ch, out_ch):
- super().__init__()
- self.encode_enc = ResBlock(2*in_ch, out_ch)
-
- self.scale = nn.Sequential(
- nn.Conv2d(in_ch, out_ch, kernel_size=3, padding=1),
- nn.LeakyReLU(0.2, True),
- nn.Conv2d(out_ch, out_ch, kernel_size=3, padding=1))
-
- self.shift = nn.Sequential(
- nn.Conv2d(in_ch, out_ch, kernel_size=3, padding=1),
- nn.LeakyReLU(0.2, True),
- nn.Conv2d(out_ch, out_ch, kernel_size=3, padding=1))
-
- def forward(self, enc_feat, dec_feat, w=1):
- enc_feat = self.encode_enc(torch.cat([enc_feat, dec_feat], dim=1))
- scale = self.scale(enc_feat)
- shift = self.shift(enc_feat)
- residual = w * (dec_feat * scale + shift)
- out = dec_feat + residual
- return out
-
-
-@ARCH_REGISTRY.register()
-class CodeFormer(VQAutoEncoder):
- def __init__(self, dim_embd=512, n_head=8, n_layers=9,
- codebook_size=1024, latent_size=256,
- connect_list=('32', '64', '128', '256'),
- fix_modules=('quantize', 'generator')):
- super(CodeFormer, self).__init__(512, 64, [1, 2, 2, 4, 4, 8], 'nearest',2, [16], codebook_size)
-
- if fix_modules is not None:
- for module in fix_modules:
- for param in getattr(self, module).parameters():
- param.requires_grad = False
-
- self.connect_list = connect_list
- self.n_layers = n_layers
- self.dim_embd = dim_embd
- self.dim_mlp = dim_embd*2
-
- self.position_emb = nn.Parameter(torch.zeros(latent_size, self.dim_embd))
- self.feat_emb = nn.Linear(256, self.dim_embd)
-
- # transformer
- self.ft_layers = nn.Sequential(*[TransformerSALayer(embed_dim=dim_embd, nhead=n_head, dim_mlp=self.dim_mlp, dropout=0.0)
- for _ in range(self.n_layers)])
-
- # logits_predict head
- self.idx_pred_layer = nn.Sequential(
- nn.LayerNorm(dim_embd),
- nn.Linear(dim_embd, codebook_size, bias=False))
-
- self.channels = {
- '16': 512,
- '32': 256,
- '64': 256,
- '128': 128,
- '256': 128,
- '512': 64,
- }
-
- # after second residual block for > 16, before attn layer for ==16
- self.fuse_encoder_block = {'512':2, '256':5, '128':8, '64':11, '32':14, '16':18}
- # after first residual block for > 16, before attn layer for ==16
- self.fuse_generator_block = {'16':6, '32': 9, '64':12, '128':15, '256':18, '512':21}
-
- # fuse_convs_dict
- self.fuse_convs_dict = nn.ModuleDict()
- for f_size in self.connect_list:
- in_ch = self.channels[f_size]
- self.fuse_convs_dict[f_size] = Fuse_sft_block(in_ch, in_ch)
-
- def _init_weights(self, module):
- if isinstance(module, (nn.Linear, nn.Embedding)):
- module.weight.data.normal_(mean=0.0, std=0.02)
- if isinstance(module, nn.Linear) and module.bias is not None:
- module.bias.data.zero_()
- elif isinstance(module, nn.LayerNorm):
- module.bias.data.zero_()
- module.weight.data.fill_(1.0)
-
- def forward(self, x, w=0, detach_16=True, code_only=False, adain=False):
- # ################### Encoder #####################
- enc_feat_dict = {}
- out_list = [self.fuse_encoder_block[f_size] for f_size in self.connect_list]
- for i, block in enumerate(self.encoder.blocks):
- x = block(x)
- if i in out_list:
- enc_feat_dict[str(x.shape[-1])] = x.clone()
-
- lq_feat = x
- # ################# Transformer ###################
- # quant_feat, codebook_loss, quant_stats = self.quantize(lq_feat)
- pos_emb = self.position_emb.unsqueeze(1).repeat(1,x.shape[0],1)
- # BCHW -> BC(HW) -> (HW)BC
- feat_emb = self.feat_emb(lq_feat.flatten(2).permute(2,0,1))
- query_emb = feat_emb
- # Transformer encoder
- for layer in self.ft_layers:
- query_emb = layer(query_emb, query_pos=pos_emb)
-
- # output logits
- logits = self.idx_pred_layer(query_emb) # (hw)bn
- logits = logits.permute(1,0,2) # (hw)bn -> b(hw)n
-
- if code_only: # for training stage II
- # logits doesn't need softmax before cross_entropy loss
- return logits, lq_feat
-
- # ################# Quantization ###################
- # if self.training:
- # quant_feat = torch.einsum('btn,nc->btc', [soft_one_hot, self.quantize.embedding.weight])
- # # b(hw)c -> bc(hw) -> bchw
- # quant_feat = quant_feat.permute(0,2,1).view(lq_feat.shape)
- # ------------
- soft_one_hot = F.softmax(logits, dim=2)
- _, top_idx = torch.topk(soft_one_hot, 1, dim=2)
- quant_feat = self.quantize.get_codebook_feat(top_idx, shape=[x.shape[0],16,16,256])
- # preserve gradients
- # quant_feat = lq_feat + (quant_feat - lq_feat).detach()
-
- if detach_16:
- quant_feat = quant_feat.detach() # for training stage III
- if adain:
- quant_feat = adaptive_instance_normalization(quant_feat, lq_feat)
-
- # ################## Generator ####################
- x = quant_feat
- fuse_list = [self.fuse_generator_block[f_size] for f_size in self.connect_list]
-
- for i, block in enumerate(self.generator.blocks):
- x = block(x)
- if i in fuse_list: # fuse after i-th block
- f_size = str(x.shape[-1])
- if w>0:
- x = self.fuse_convs_dict[f_size](enc_feat_dict[f_size].detach(), x, w)
- out = x
- # logits doesn't need softmax before cross_entropy loss
- return out, logits, lq_feat
diff --git a/modules/codeformer/vqgan_arch.py b/modules/codeformer/vqgan_arch.py
deleted file mode 100644
index 09ee6660..00000000
--- a/modules/codeformer/vqgan_arch.py
+++ /dev/null
@@ -1,435 +0,0 @@
-# this file is copied from CodeFormer repository. Please see comment in modules/codeformer_model.py
-
-'''
-VQGAN code, adapted from the original created by the Unleashing Transformers authors:
-https://github.com/samb-t/unleashing-transformers/blob/master/models/vqgan.py
-
-'''
-import torch
-import torch.nn as nn
-import torch.nn.functional as F
-from basicsr.utils import get_root_logger
-from basicsr.utils.registry import ARCH_REGISTRY
-
-def normalize(in_channels):
- return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
-
-
-@torch.jit.script
-def swish(x):
- return x*torch.sigmoid(x)
-
-
-# Define VQVAE classes
-class VectorQuantizer(nn.Module):
- def __init__(self, codebook_size, emb_dim, beta):
- super(VectorQuantizer, self).__init__()
- self.codebook_size = codebook_size # number of embeddings
- self.emb_dim = emb_dim # dimension of embedding
- self.beta = beta # commitment cost used in loss term, beta * ||z_e(x)-sg[e]||^2
- self.embedding = nn.Embedding(self.codebook_size, self.emb_dim)
- self.embedding.weight.data.uniform_(-1.0 / self.codebook_size, 1.0 / self.codebook_size)
-
- def forward(self, z):
- # reshape z -> (batch, height, width, channel) and flatten
- z = z.permute(0, 2, 3, 1).contiguous()
- z_flattened = z.view(-1, self.emb_dim)
-
- # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z
- d = (z_flattened ** 2).sum(dim=1, keepdim=True) + (self.embedding.weight**2).sum(1) - \
- 2 * torch.matmul(z_flattened, self.embedding.weight.t())
-
- mean_distance = torch.mean(d)
- # find closest encodings
- # min_encoding_indices = torch.argmin(d, dim=1).unsqueeze(1)
- min_encoding_scores, min_encoding_indices = torch.topk(d, 1, dim=1, largest=False)
- # [0-1], higher score, higher confidence
- min_encoding_scores = torch.exp(-min_encoding_scores/10)
-
- min_encodings = torch.zeros(min_encoding_indices.shape[0], self.codebook_size).to(z)
- min_encodings.scatter_(1, min_encoding_indices, 1)
-
- # get quantized latent vectors
- z_q = torch.matmul(min_encodings, self.embedding.weight).view(z.shape)
- # compute loss for embedding
- loss = torch.mean((z_q.detach()-z)**2) + self.beta * torch.mean((z_q - z.detach()) ** 2)
- # preserve gradients
- z_q = z + (z_q - z).detach()
-
- # perplexity
- e_mean = torch.mean(min_encodings, dim=0)
- perplexity = torch.exp(-torch.sum(e_mean * torch.log(e_mean + 1e-10)))
- # reshape back to match original input shape
- z_q = z_q.permute(0, 3, 1, 2).contiguous()
-
- return z_q, loss, {
- "perplexity": perplexity,
- "min_encodings": min_encodings,
- "min_encoding_indices": min_encoding_indices,
- "min_encoding_scores": min_encoding_scores,
- "mean_distance": mean_distance
- }
-
- def get_codebook_feat(self, indices, shape):
- # input indices: batch*token_num -> (batch*token_num)*1
- # shape: batch, height, width, channel
- indices = indices.view(-1,1)
- min_encodings = torch.zeros(indices.shape[0], self.codebook_size).to(indices)
- min_encodings.scatter_(1, indices, 1)
- # get quantized latent vectors
- z_q = torch.matmul(min_encodings.float(), self.embedding.weight)
-
- if shape is not None: # reshape back to match original input shape
- z_q = z_q.view(shape).permute(0, 3, 1, 2).contiguous()
-
- return z_q
-
-
-class GumbelQuantizer(nn.Module):
- def __init__(self, codebook_size, emb_dim, num_hiddens, straight_through=False, kl_weight=5e-4, temp_init=1.0):
- super().__init__()
- self.codebook_size = codebook_size # number of embeddings
- self.emb_dim = emb_dim # dimension of embedding
- self.straight_through = straight_through
- self.temperature = temp_init
- self.kl_weight = kl_weight
- self.proj = nn.Conv2d(num_hiddens, codebook_size, 1) # projects last encoder layer to quantized logits
- self.embed = nn.Embedding(codebook_size, emb_dim)
-
- def forward(self, z):
- hard = self.straight_through if self.training else True
-
- logits = self.proj(z)
-
- soft_one_hot = F.gumbel_softmax(logits, tau=self.temperature, dim=1, hard=hard)
-
- z_q = torch.einsum("b n h w, n d -> b d h w", soft_one_hot, self.embed.weight)
-
- # + kl divergence to the prior loss
- qy = F.softmax(logits, dim=1)
- diff = self.kl_weight * torch.sum(qy * torch.log(qy * self.codebook_size + 1e-10), dim=1).mean()
- min_encoding_indices = soft_one_hot.argmax(dim=1)
-
- return z_q, diff, {
- "min_encoding_indices": min_encoding_indices
- }
-
-
-class Downsample(nn.Module):
- def __init__(self, in_channels):
- super().__init__()
- self.conv = torch.nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=2, padding=0)
-
- def forward(self, x):
- pad = (0, 1, 0, 1)
- x = torch.nn.functional.pad(x, pad, mode="constant", value=0)
- x = self.conv(x)
- return x
-
-
-class Upsample(nn.Module):
- def __init__(self, in_channels):
- super().__init__()
- self.conv = nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1)
-
- def forward(self, x):
- x = F.interpolate(x, scale_factor=2.0, mode="nearest")
- x = self.conv(x)
-
- return x
-
-
-class ResBlock(nn.Module):
- def __init__(self, in_channels, out_channels=None):
- super(ResBlock, self).__init__()
- self.in_channels = in_channels
- self.out_channels = in_channels if out_channels is None else out_channels
- self.norm1 = normalize(in_channels)
- self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
- self.norm2 = normalize(out_channels)
- self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
- if self.in_channels != self.out_channels:
- self.conv_out = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)
-
- def forward(self, x_in):
- x = x_in
- x = self.norm1(x)
- x = swish(x)
- x = self.conv1(x)
- x = self.norm2(x)
- x = swish(x)
- x = self.conv2(x)
- if self.in_channels != self.out_channels:
- x_in = self.conv_out(x_in)
-
- return x + x_in
-
-
-class AttnBlock(nn.Module):
- def __init__(self, in_channels):
- super().__init__()
- self.in_channels = in_channels
-
- self.norm = normalize(in_channels)
- self.q = torch.nn.Conv2d(
- in_channels,
- in_channels,
- kernel_size=1,
- stride=1,
- padding=0
- )
- self.k = torch.nn.Conv2d(
- in_channels,
- in_channels,
- kernel_size=1,
- stride=1,
- padding=0
- )
- self.v = torch.nn.Conv2d(
- in_channels,
- in_channels,
- kernel_size=1,
- stride=1,
- padding=0
- )
- self.proj_out = torch.nn.Conv2d(
- in_channels,
- in_channels,
- kernel_size=1,
- stride=1,
- padding=0
- )
-
- def forward(self, x):
- h_ = x
- h_ = self.norm(h_)
- q = self.q(h_)
- k = self.k(h_)
- v = self.v(h_)
-
- # compute attention
- b, c, h, w = q.shape
- q = q.reshape(b, c, h*w)
- q = q.permute(0, 2, 1)
- k = k.reshape(b, c, h*w)
- w_ = torch.bmm(q, k)
- w_ = w_ * (int(c)**(-0.5))
- w_ = F.softmax(w_, dim=2)
-
- # attend to values
- v = v.reshape(b, c, h*w)
- w_ = w_.permute(0, 2, 1)
- h_ = torch.bmm(v, w_)
- h_ = h_.reshape(b, c, h, w)
-
- h_ = self.proj_out(h_)
-
- return x+h_
-
-
-class Encoder(nn.Module):
- def __init__(self, in_channels, nf, emb_dim, ch_mult, num_res_blocks, resolution, attn_resolutions):
- super().__init__()
- self.nf = nf
- self.num_resolutions = len(ch_mult)
- self.num_res_blocks = num_res_blocks
- self.resolution = resolution
- self.attn_resolutions = attn_resolutions
-
- curr_res = self.resolution
- in_ch_mult = (1,)+tuple(ch_mult)
-
- blocks = []
- # initial convultion
- blocks.append(nn.Conv2d(in_channels, nf, kernel_size=3, stride=1, padding=1))
-
- # residual and downsampling blocks, with attention on smaller res (16x16)
- for i in range(self.num_resolutions):
- block_in_ch = nf * in_ch_mult[i]
- block_out_ch = nf * ch_mult[i]
- for _ in range(self.num_res_blocks):
- blocks.append(ResBlock(block_in_ch, block_out_ch))
- block_in_ch = block_out_ch
- if curr_res in attn_resolutions:
- blocks.append(AttnBlock(block_in_ch))
-
- if i != self.num_resolutions - 1:
- blocks.append(Downsample(block_in_ch))
- curr_res = curr_res // 2
-
- # non-local attention block
- blocks.append(ResBlock(block_in_ch, block_in_ch))
- blocks.append(AttnBlock(block_in_ch))
- blocks.append(ResBlock(block_in_ch, block_in_ch))
-
- # normalise and convert to latent size
- blocks.append(normalize(block_in_ch))
- blocks.append(nn.Conv2d(block_in_ch, emb_dim, kernel_size=3, stride=1, padding=1))
- self.blocks = nn.ModuleList(blocks)
-
- def forward(self, x):
- for block in self.blocks:
- x = block(x)
-
- return x
-
-
-class Generator(nn.Module):
- def __init__(self, nf, emb_dim, ch_mult, res_blocks, img_size, attn_resolutions):
- super().__init__()
- self.nf = nf
- self.ch_mult = ch_mult
- self.num_resolutions = len(self.ch_mult)
- self.num_res_blocks = res_blocks
- self.resolution = img_size
- self.attn_resolutions = attn_resolutions
- self.in_channels = emb_dim
- self.out_channels = 3
- block_in_ch = self.nf * self.ch_mult[-1]
- curr_res = self.resolution // 2 ** (self.num_resolutions-1)
-
- blocks = []
- # initial conv
- blocks.append(nn.Conv2d(self.in_channels, block_in_ch, kernel_size=3, stride=1, padding=1))
-
- # non-local attention block
- blocks.append(ResBlock(block_in_ch, block_in_ch))
- blocks.append(AttnBlock(block_in_ch))
- blocks.append(ResBlock(block_in_ch, block_in_ch))
-
- for i in reversed(range(self.num_resolutions)):
- block_out_ch = self.nf * self.ch_mult[i]
-
- for _ in range(self.num_res_blocks):
- blocks.append(ResBlock(block_in_ch, block_out_ch))
- block_in_ch = block_out_ch
-
- if curr_res in self.attn_resolutions:
- blocks.append(AttnBlock(block_in_ch))
-
- if i != 0:
- blocks.append(Upsample(block_in_ch))
- curr_res = curr_res * 2
-
- blocks.append(normalize(block_in_ch))
- blocks.append(nn.Conv2d(block_in_ch, self.out_channels, kernel_size=3, stride=1, padding=1))
-
- self.blocks = nn.ModuleList(blocks)
-
-
- def forward(self, x):
- for block in self.blocks:
- x = block(x)
-
- return x
-
-
-@ARCH_REGISTRY.register()
-class VQAutoEncoder(nn.Module):
- def __init__(self, img_size, nf, ch_mult, quantizer="nearest", res_blocks=2, attn_resolutions=None, codebook_size=1024, emb_dim=256,
- beta=0.25, gumbel_straight_through=False, gumbel_kl_weight=1e-8, model_path=None):
- super().__init__()
- logger = get_root_logger()
- self.in_channels = 3
- self.nf = nf
- self.n_blocks = res_blocks
- self.codebook_size = codebook_size
- self.embed_dim = emb_dim
- self.ch_mult = ch_mult
- self.resolution = img_size
- self.attn_resolutions = attn_resolutions or [16]
- self.quantizer_type = quantizer
- self.encoder = Encoder(
- self.in_channels,
- self.nf,
- self.embed_dim,
- self.ch_mult,
- self.n_blocks,
- self.resolution,
- self.attn_resolutions
- )
- if self.quantizer_type == "nearest":
- self.beta = beta #0.25
- self.quantize = VectorQuantizer(self.codebook_size, self.embed_dim, self.beta)
- elif self.quantizer_type == "gumbel":
- self.gumbel_num_hiddens = emb_dim
- self.straight_through = gumbel_straight_through
- self.kl_weight = gumbel_kl_weight
- self.quantize = GumbelQuantizer(
- self.codebook_size,
- self.embed_dim,
- self.gumbel_num_hiddens,
- self.straight_through,
- self.kl_weight
- )
- self.generator = Generator(
- self.nf,
- self.embed_dim,
- self.ch_mult,
- self.n_blocks,
- self.resolution,
- self.attn_resolutions
- )
-
- if model_path is not None:
- chkpt = torch.load(model_path, map_location='cpu')
- if 'params_ema' in chkpt:
- self.load_state_dict(torch.load(model_path, map_location='cpu')['params_ema'])
- logger.info(f'vqgan is loaded from: {model_path} [params_ema]')
- elif 'params' in chkpt:
- self.load_state_dict(torch.load(model_path, map_location='cpu')['params'])
- logger.info(f'vqgan is loaded from: {model_path} [params]')
- else:
- raise ValueError('Wrong params!')
-
-
- def forward(self, x):
- x = self.encoder(x)
- quant, codebook_loss, quant_stats = self.quantize(x)
- x = self.generator(quant)
- return x, codebook_loss, quant_stats
-
-
-
-# patch based discriminator
-@ARCH_REGISTRY.register()
-class VQGANDiscriminator(nn.Module):
- def __init__(self, nc=3, ndf=64, n_layers=4, model_path=None):
- super().__init__()
-
- layers = [nn.Conv2d(nc, ndf, kernel_size=4, stride=2, padding=1), nn.LeakyReLU(0.2, True)]
- ndf_mult = 1
- ndf_mult_prev = 1
- for n in range(1, n_layers): # gradually increase the number of filters
- ndf_mult_prev = ndf_mult
- ndf_mult = min(2 ** n, 8)
- layers += [
- nn.Conv2d(ndf * ndf_mult_prev, ndf * ndf_mult, kernel_size=4, stride=2, padding=1, bias=False),
- nn.BatchNorm2d(ndf * ndf_mult),
- nn.LeakyReLU(0.2, True)
- ]
-
- ndf_mult_prev = ndf_mult
- ndf_mult = min(2 ** n_layers, 8)
-
- layers += [
- nn.Conv2d(ndf * ndf_mult_prev, ndf * ndf_mult, kernel_size=4, stride=1, padding=1, bias=False),
- nn.BatchNorm2d(ndf * ndf_mult),
- nn.LeakyReLU(0.2, True)
- ]
-
- layers += [
- nn.Conv2d(ndf * ndf_mult, 1, kernel_size=4, stride=1, padding=1)] # output 1 channel prediction map
- self.main = nn.Sequential(*layers)
-
- if model_path is not None:
- chkpt = torch.load(model_path, map_location='cpu')
- if 'params_d' in chkpt:
- self.load_state_dict(torch.load(model_path, map_location='cpu')['params_d'])
- elif 'params' in chkpt:
- self.load_state_dict(torch.load(model_path, map_location='cpu')['params'])
- else:
- raise ValueError('Wrong params!')
-
- def forward(self, x):
- return self.main(x)