aboutsummaryrefslogtreecommitdiff
path: root/modules
diff options
context:
space:
mode:
Diffstat (limited to 'modules')
-rw-r--r--modules/images.py191
1 files changed, 191 insertions, 0 deletions
diff --git a/modules/images.py b/modules/images.py
index eb644733..b5a0cead 100644
--- a/modules/images.py
+++ b/modules/images.py
@@ -776,3 +776,194 @@ def flatten(img, bgcolor):
img = background
return img.convert('RGB')
+
+
+def weighted_histogram_filter(img, kernel, kernel_center, percentile_min=0.0, percentile_max=1.0, min_width=1.0):
+ """
+ Generalization convolution filter capable of applying
+ weighted mean, median, maximum, and minimum filters
+ parametrically using an arbitrary kernel.
+
+ Args:
+ img (nparray):
+ The image, a 2-D array of floats, to which the filter is being applied.
+ kernel (nparray):
+ The kernel, a 2-D array of floats.
+ kernel_center (nparray):
+ The kernel center coordinate, a 1-D array with two elements.
+ percentile_min (float):
+ The lower bound of the histogram window used by the filter,
+ from 0 to 1.
+ percentile_max (float):
+ The upper bound of the histogram window used by the filter,
+ from 0 to 1.
+ min_width (float):
+ The minimum size of the histogram window bounds, in weight units.
+ Must be greater than 0.
+
+ Returns:
+ (nparray): A filtered copy of the input image "img", a 2-D array of floats.
+ """
+
+ # Converts an index tuple into a vector.
+ def vec(x):
+ return np.array(x)
+
+ kernel_min = -kernel_center
+ kernel_max = vec(kernel.shape) - kernel_center
+
+ def weighted_histogram_filter_single(idx):
+ idx = vec(idx)
+ min_index = np.maximum(0, idx + kernel_min)
+ max_index = np.minimum(vec(img.shape), idx + kernel_max)
+ window_shape = max_index - min_index
+
+ class WeightedElement:
+ """
+ An element of the histogram, its weight
+ and bounds.
+ """
+ def __init__(self, value, weight):
+ self.value: float = value
+ self.weight: float = weight
+ self.window_min: float = 0.0
+ self.window_max: float = 1.0
+
+ # Collect the values in the image as WeightedElements,
+ # weighted by their corresponding kernel values.
+ values = []
+ for window_tup in np.ndindex(tuple(window_shape)):
+ window_index = vec(window_tup)
+ image_index = window_index + min_index
+ centered_kernel_index = image_index - idx
+ kernel_index = centered_kernel_index + kernel_center
+ element = WeightedElement(img[tuple(image_index)], kernel[tuple(kernel_index)])
+ values.append(element)
+
+ def sort_key(x: WeightedElement):
+ return x.value
+
+ values.sort(key=sort_key)
+
+ # Calculate the height of the stack (sum)
+ # and each sample's range they occupy in the stack
+ sum = 0
+ for i in range(len(values)):
+ values[i].window_min = sum
+ sum += values[i].weight
+ values[i].window_max = sum
+
+ # Calculate what range of this stack ("window")
+ # we want to get the weighted average across.
+ window_min = sum * percentile_min
+ window_max = sum * percentile_max
+ window_width = window_max - window_min
+
+ # Ensure the window is within the stack and at least a certain size.
+ if window_width < min_width:
+ window_center = (window_min + window_max) / 2
+ window_min = window_center - min_width / 2
+ window_max = window_center + min_width / 2
+
+ if window_max > sum:
+ window_max = sum
+ window_min = sum - min_width
+
+ if window_min < 0:
+ window_min = 0
+ window_max = min_width
+
+ value = 0
+ value_weight = 0
+
+ # Get the weighted average of all the samples
+ # that overlap with the window, weighted
+ # by the size of their overlap.
+ for i in range(len(values)):
+ if window_min >= values[i].window_max:
+ continue
+ if window_max <= values[i].window_min:
+ break
+
+ s = max(window_min, values[i].window_min)
+ e = min(window_max, values[i].window_max)
+ w = e - s
+
+ value += values[i].value * w
+ value_weight += w
+
+ return value / value_weight if value_weight != 0 else 0
+
+ img_out = img.copy()
+
+ # Apply the kernel operation over each pixel.
+ for index in np.ndindex(img.shape):
+ img_out[index] = weighted_histogram_filter_single(index)
+
+ return img_out
+
+def smoothstep(x):
+ """
+ The smoothstep function, input should be clamped to 0-1 range.
+ Turns a diagonal line (f(x) = x) into a sigmoid-like curve.
+ """
+ return x * x * (3 - 2 * x)
+
+def smootherstep(x):
+ """
+ The smootherstep function, input should be clamped to 0-1 range.
+ Turns a diagonal line (f(x) = x) into a sigmoid-like curve.
+ """
+ return x * x * x * (x * (6 * x - 15) + 10)
+
+
+def get_gaussian_kernel(stddev_radius=1.0, max_radius=2):
+ """
+ Creates a Gaussian kernel with thresholded edges.
+
+ Args:
+ stddev_radius (float):
+ Standard deviation of the gaussian kernel, in pixels.
+ max_radius (int):
+ The size of the filter kernel. The number of pixels is (max_radius*2+1) ** 2.
+ The kernel is thresholded so that any values one pixel beyond this radius
+ is weighted at 0.
+
+ Returns:
+ (nparray, nparray): A kernel array (shape: (N, N)), its center coordinate (shape: (2))
+ """
+ # Evaluates a 0-1 normalized gaussian function for a given square distance from the mean.
+ def gaussian(sqr_mag):
+ return math.exp(-sqr_mag / (stddev_radius * stddev_radius))
+
+ # Helper function for converting a tuple to an array.
+ def vec(x):
+ return np.array(x)
+
+ """
+ Since a gaussian is unbounded, we need to limit ourselves
+ to a finite range.
+ We taper the ends off at the end of that range so they equal zero
+ while preserving the maximum value of 1 at the mean.
+ """
+ zero_radius = max_radius + 1.0
+ gauss_zero = gaussian(zero_radius * zero_radius)
+ gauss_kernel_scale = 1 / (1 - gauss_zero)
+
+ def gaussian_kernel_func(coordinate):
+ x = coordinate[0] ** 2.0 + coordinate[1] ** 2.0
+ x = gaussian(x)
+ x -= gauss_zero
+ x /= gauss_kernel_scale
+ x = max(0.0, x)
+ return x
+
+ size = max_radius * 2 + 1
+ kernel_center = max_radius
+ kernel = np.zeros((size, size))
+
+ for index in np.ndindex(kernel.shape):
+ kernel[index] = gaussian_kernel_func(vec(index) - kernel_center)
+
+ return kernel, kernel_center
+