aboutsummaryrefslogtreecommitdiff
path: root/modules/sd_hijack_inpainting.py
blob: 202b42cf5f3da771753a3de8a5c218620d618906 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
import torch
import modules.devices as devices

from einops import repeat
from omegaconf import ListConfig

import ldm.models.diffusion.ddpm
import ldm.models.diffusion.ddim
import ldm.models.diffusion.plms

from ldm.models.diffusion.ddpm import LatentDiffusion
from ldm.models.diffusion.plms import PLMSSampler
from ldm.models.diffusion.ddim import DDIMSampler, noise_like

# =================================================================================================
# Monkey patch DDIMSampler methods from RunwayML repo directly.
# Adapted from:
# https://github.com/runwayml/stable-diffusion/blob/main/ldm/models/diffusion/ddim.py
# =================================================================================================
@torch.no_grad()
def sample_ddim(self,
            S,
            batch_size,
            shape,
            conditioning=None,
            callback=None,
            normals_sequence=None,
            img_callback=None,
            quantize_x0=False,
            eta=0.,
            mask=None,
            x0=None,
            temperature=1.,
            noise_dropout=0.,
            score_corrector=None,
            corrector_kwargs=None,
            verbose=True,
            x_T=None,
            log_every_t=100,
            unconditional_guidance_scale=1.,
            unconditional_conditioning=None,
            # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
            **kwargs
            ):
    if conditioning is not None:
        if isinstance(conditioning, dict):
            ctmp = conditioning[list(conditioning.keys())[0]]
            while isinstance(ctmp, list):
                ctmp = ctmp[0]
            cbs = ctmp.shape[0]
            if cbs != batch_size:
                print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
        else:
            if conditioning.shape[0] != batch_size:
                print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")

    self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose)
    # sampling
    C, H, W = shape
    size = (batch_size, C, H, W)
    print(f'Data shape for DDIM sampling is {size}, eta {eta}')

    samples, intermediates = self.ddim_sampling(conditioning, size,
                                                callback=callback,
                                                img_callback=img_callback,
                                                quantize_denoised=quantize_x0,
                                                mask=mask, x0=x0,
                                                ddim_use_original_steps=False,
                                                noise_dropout=noise_dropout,
                                                temperature=temperature,
                                                score_corrector=score_corrector,
                                                corrector_kwargs=corrector_kwargs,
                                                x_T=x_T,
                                                log_every_t=log_every_t,
                                                unconditional_guidance_scale=unconditional_guidance_scale,
                                                unconditional_conditioning=unconditional_conditioning,
                                                )
    return samples, intermediates

@torch.no_grad()
def p_sample_ddim(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
                    temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
                    unconditional_guidance_scale=1., unconditional_conditioning=None):
    b, *_, device = *x.shape, x.device

    if unconditional_conditioning is None or unconditional_guidance_scale == 1.:
        e_t = self.model.apply_model(x, t, c)
    else:
        x_in = torch.cat([x] * 2)
        t_in = torch.cat([t] * 2)
        if isinstance(c, dict):
            assert isinstance(unconditional_conditioning, dict)
            c_in = dict()
            for k in c:
                if isinstance(c[k], list):
                    c_in[k] = [
                        torch.cat([unconditional_conditioning[k][i], c[k][i]])
                        for i in range(len(c[k]))
                    ]
                else:
                    c_in[k] = torch.cat([unconditional_conditioning[k], c[k]])
        else:
            c_in = torch.cat([unconditional_conditioning, c])
        e_t_uncond, e_t = self.model.apply_model(x_in, t_in, c_in).chunk(2)
        e_t = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond)

    if score_corrector is not None:
        assert self.model.parameterization == "eps"
        e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs)

    alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
    alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev
    sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas
    sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas
    # select parameters corresponding to the currently considered timestep
    a_t = torch.full((b, 1, 1, 1), alphas[index], device=device)
    a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device)
    sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device)
    sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index],device=device)

    # current prediction for x_0
    pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
    if quantize_denoised:
        pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
    # direction pointing to x_t
    dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t
    noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
    if noise_dropout > 0.:
        noise = torch.nn.functional.dropout(noise, p=noise_dropout)
    x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
    return x_prev, pred_x0


# =================================================================================================
# Monkey patch PLMSSampler methods.
# This one was not actually patched correctly in the RunwayML repo, but we can replicate the changes.
# Adapted from:
# https://github.com/CompVis/stable-diffusion/blob/main/ldm/models/diffusion/plms.py
# =================================================================================================
@torch.no_grad()
def sample_plms(self,
            S,
            batch_size,
            shape,
            conditioning=None,
            callback=None,
            normals_sequence=None,
            img_callback=None,
            quantize_x0=False,
            eta=0.,
            mask=None,
            x0=None,
            temperature=1.,
            noise_dropout=0.,
            score_corrector=None,
            corrector_kwargs=None,
            verbose=True,
            x_T=None,
            log_every_t=100,
            unconditional_guidance_scale=1.,
            unconditional_conditioning=None,
            # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
            **kwargs
            ):
    if conditioning is not None:
        if isinstance(conditioning, dict):
            ctmp = conditioning[list(conditioning.keys())[0]]
            while isinstance(ctmp, list):
                ctmp = ctmp[0]
            cbs = ctmp.shape[0]
            if cbs != batch_size:
                print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
        else:
            if conditioning.shape[0] != batch_size:
                print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")

    self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose)
    # sampling
    C, H, W = shape
    size = (batch_size, C, H, W)
    print(f'Data shape for PLMS sampling is {size}')

    samples, intermediates = self.plms_sampling(conditioning, size,
                                                callback=callback,
                                                img_callback=img_callback,
                                                quantize_denoised=quantize_x0,
                                                mask=mask, x0=x0,
                                                ddim_use_original_steps=False,
                                                noise_dropout=noise_dropout,
                                                temperature=temperature,
                                                score_corrector=score_corrector,
                                                corrector_kwargs=corrector_kwargs,
                                                x_T=x_T,
                                                log_every_t=log_every_t,
                                                unconditional_guidance_scale=unconditional_guidance_scale,
                                                unconditional_conditioning=unconditional_conditioning,
                                                )
    return samples, intermediates


@torch.no_grad()
def p_sample_plms(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
                    temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
                    unconditional_guidance_scale=1., unconditional_conditioning=None, old_eps=None, t_next=None):
    b, *_, device = *x.shape, x.device

    def get_model_output(x, t):
        if unconditional_conditioning is None or unconditional_guidance_scale == 1.:
            e_t = self.model.apply_model(x, t, c)
        else:
            x_in = torch.cat([x] * 2)
            t_in = torch.cat([t] * 2)
            
            if isinstance(c, dict):
                assert isinstance(unconditional_conditioning, dict)
                c_in = dict()
                for k in c:
                    if isinstance(c[k], list):
                        c_in[k] = [
                            torch.cat([unconditional_conditioning[k][i], c[k][i]])
                            for i in range(len(c[k]))
                        ]
                    else:
                        c_in[k] = torch.cat([unconditional_conditioning[k], c[k]])
            else:
                c_in = torch.cat([unconditional_conditioning, c])

            e_t_uncond, e_t = self.model.apply_model(x_in, t_in, c_in).chunk(2)
            e_t = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond)

        if score_corrector is not None:
            assert self.model.parameterization == "eps"
            e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs)

        return e_t

    alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
    alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev
    sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas
    sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas

    def get_x_prev_and_pred_x0(e_t, index):
        # select parameters corresponding to the currently considered timestep
        a_t = torch.full((b, 1, 1, 1), alphas[index], device=device)
        a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device)
        sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device)
        sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index],device=device)

        # current prediction for x_0
        pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
        if quantize_denoised:
            pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
        # direction pointing to x_t
        dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t
        noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
        if noise_dropout > 0.:
            noise = torch.nn.functional.dropout(noise, p=noise_dropout)
        x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
        return x_prev, pred_x0

    e_t = get_model_output(x, t)
    if len(old_eps) == 0:
        # Pseudo Improved Euler (2nd order)
        x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t, index)
        e_t_next = get_model_output(x_prev, t_next)
        e_t_prime = (e_t + e_t_next) / 2
    elif len(old_eps) == 1:
        # 2nd order Pseudo Linear Multistep (Adams-Bashforth)
        e_t_prime = (3 * e_t - old_eps[-1]) / 2
    elif len(old_eps) == 2:
        # 3nd order Pseudo Linear Multistep (Adams-Bashforth)
        e_t_prime = (23 * e_t - 16 * old_eps[-1] + 5 * old_eps[-2]) / 12
    elif len(old_eps) >= 3:
        # 4nd order Pseudo Linear Multistep (Adams-Bashforth)
        e_t_prime = (55 * e_t - 59 * old_eps[-1] + 37 * old_eps[-2] - 9 * old_eps[-3]) / 24

    x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t_prime, index)

    return x_prev, pred_x0, e_t
    
# =================================================================================================
# Monkey patch LatentInpaintDiffusion to load the checkpoint with a proper config.
# Adapted from:
# https://github.com/runwayml/stable-diffusion/blob/main/ldm/models/diffusion/ddpm.py
# =================================================================================================

@torch.no_grad()
def get_unconditional_conditioning(self, batch_size, null_label=None):
    if null_label is not None:
        xc = null_label
        if isinstance(xc, ListConfig):
            xc = list(xc)
        if isinstance(xc, dict) or isinstance(xc, list):
            c = self.get_learned_conditioning(xc)
        else:
            if hasattr(xc, "to"):
                xc = xc.to(self.device)
            c = self.get_learned_conditioning(xc)
    else:
        # todo: get null label from cond_stage_model
        raise NotImplementedError()
    c = repeat(c, "1 ... -> b ...", b=batch_size).to(self.device)
    return c


class LatentInpaintDiffusion(LatentDiffusion):
    def __init__(
        self,
        concat_keys=("mask", "masked_image"),
        masked_image_key="masked_image",
        *args,
        **kwargs,
    ):
        super().__init__(*args, **kwargs)
        self.masked_image_key = masked_image_key
        assert self.masked_image_key in concat_keys
        self.concat_keys = concat_keys
            

# =================================================================================================
# Fix register buffer bug for Mac OS, Viktor Tabori, viktor.doklist.com/start-here
# =================================================================================================
def register_buffer(self, name, attr):
    if type(attr) == torch.Tensor:
        optimal_type = devices.get_optimal_device()
        if attr.device != optimal_type:
           if getattr(torch, 'has_mps', False):
               attr = attr.to(device="mps", dtype=torch.float32)
           else:
               attr = attr.to(optimal_type)
    setattr(self, name, attr)


def should_hijack_inpainting(checkpoint_info):
    return str(checkpoint_info.filename).endswith("inpainting.ckpt") and not checkpoint_info.config.endswith("inpainting.yaml")


def do_inpainting_hijack():
    ldm.models.diffusion.ddpm.get_unconditional_conditioning = get_unconditional_conditioning
    ldm.models.diffusion.ddpm.LatentInpaintDiffusion = LatentInpaintDiffusion

    ldm.models.diffusion.ddim.DDIMSampler.p_sample_ddim = p_sample_ddim
    ldm.models.diffusion.ddim.DDIMSampler.sample = sample_ddim
    ldm.models.diffusion.ddim.DDIMSampler.register_buffer = register_buffer

    ldm.models.diffusion.plms.PLMSSampler.p_sample_plms = p_sample_plms
    ldm.models.diffusion.plms.PLMSSampler.sample = sample_plms
    ldm.models.diffusion.plms.PLMSSampler.register_buffer = register_buffer