aboutsummaryrefslogtreecommitdiff
path: root/modules/sd_hijack_optimizations.py
blob: 372555ffaf49d18425dcf219c0e628db0084c154 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
import math
import sys
import traceback
import psutil

import torch
from torch import einsum

from ldm.util import default
from einops import rearrange

from modules import shared, errors, devices
from modules.hypernetworks import hypernetwork

from .sub_quadratic_attention import efficient_dot_product_attention


if shared.cmd_opts.xformers or shared.cmd_opts.force_enable_xformers:
    try:
        import xformers.ops
        shared.xformers_available = True
    except Exception:
        print("Cannot import xformers", file=sys.stderr)
        print(traceback.format_exc(), file=sys.stderr)


def get_available_vram():
    if shared.device.type == 'cuda':
        stats = torch.cuda.memory_stats(shared.device)
        mem_active = stats['active_bytes.all.current']
        mem_reserved = stats['reserved_bytes.all.current']
        mem_free_cuda, _ = torch.cuda.mem_get_info(torch.cuda.current_device())
        mem_free_torch = mem_reserved - mem_active
        mem_free_total = mem_free_cuda + mem_free_torch
        return mem_free_total
    else:
        return psutil.virtual_memory().available


# see https://github.com/basujindal/stable-diffusion/pull/117 for discussion
def split_cross_attention_forward_v1(self, x, context=None, mask=None):
    h = self.heads

    q_in = self.to_q(x)
    context = default(context, x)

    context_k, context_v = hypernetwork.apply_hypernetworks(shared.loaded_hypernetworks, context)
    k_in = self.to_k(context_k)
    v_in = self.to_v(context_v)
    del context, context_k, context_v, x

    q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q_in, k_in, v_in))
    del q_in, k_in, v_in

    dtype = q.dtype
    if shared.opts.upcast_attn:
        q, k, v = q.float(), k.float(), v.float()

    with devices.without_autocast(disable=not shared.opts.upcast_attn):
        r1 = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype)
        for i in range(0, q.shape[0], 2):
            end = i + 2
            s1 = einsum('b i d, b j d -> b i j', q[i:end], k[i:end])
            s1 *= self.scale
    
            s2 = s1.softmax(dim=-1)
            del s1
    
            r1[i:end] = einsum('b i j, b j d -> b i d', s2, v[i:end])
            del s2
        del q, k, v

    r1 = r1.to(dtype)

    r2 = rearrange(r1, '(b h) n d -> b n (h d)', h=h)
    del r1

    return self.to_out(r2)


# taken from https://github.com/Doggettx/stable-diffusion and modified
def split_cross_attention_forward(self, x, context=None, mask=None):
    h = self.heads

    q_in = self.to_q(x)
    context = default(context, x)

    context_k, context_v = hypernetwork.apply_hypernetworks(shared.loaded_hypernetworks, context)
    k_in = self.to_k(context_k)
    v_in = self.to_v(context_v)

    dtype = q_in.dtype
    if shared.opts.upcast_attn:
        q_in, k_in, v_in = q_in.float(), k_in.float(), v_in if v_in.device.type == 'mps' else v_in.float()

    with devices.without_autocast(disable=not shared.opts.upcast_attn):
        k_in = k_in * self.scale
    
        del context, x
    
        q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q_in, k_in, v_in))
        del q_in, k_in, v_in
    
        r1 = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype)
    
        mem_free_total = get_available_vram()
    
        gb = 1024 ** 3
        tensor_size = q.shape[0] * q.shape[1] * k.shape[1] * q.element_size()
        modifier = 3 if q.element_size() == 2 else 2.5
        mem_required = tensor_size * modifier
        steps = 1
    
        if mem_required > mem_free_total:
            steps = 2 ** (math.ceil(math.log(mem_required / mem_free_total, 2)))
            # print(f"Expected tensor size:{tensor_size/gb:0.1f}GB, cuda free:{mem_free_cuda/gb:0.1f}GB "
            #       f"torch free:{mem_free_torch/gb:0.1f} total:{mem_free_total/gb:0.1f} steps:{steps}")
    
        if steps > 64:
            max_res = math.floor(math.sqrt(math.sqrt(mem_free_total / 2.5)) / 8) * 64
            raise RuntimeError(f'Not enough memory, use lower resolution (max approx. {max_res}x{max_res}). '
                               f'Need: {mem_required / 64 / gb:0.1f}GB free, Have:{mem_free_total / gb:0.1f}GB free')
    
        slice_size = q.shape[1] // steps if (q.shape[1] % steps) == 0 else q.shape[1]
        for i in range(0, q.shape[1], slice_size):
            end = i + slice_size
            s1 = einsum('b i d, b j d -> b i j', q[:, i:end], k)
    
            s2 = s1.softmax(dim=-1, dtype=q.dtype)
            del s1
    
            r1[:, i:end] = einsum('b i j, b j d -> b i d', s2, v)
            del s2
    
        del q, k, v

    r1 = r1.to(dtype)

    r2 = rearrange(r1, '(b h) n d -> b n (h d)', h=h)
    del r1

    return self.to_out(r2)


# -- Taken from https://github.com/invoke-ai/InvokeAI and modified --
mem_total_gb = psutil.virtual_memory().total // (1 << 30)

def einsum_op_compvis(q, k, v):
    s = einsum('b i d, b j d -> b i j', q, k)
    s = s.softmax(dim=-1, dtype=s.dtype)
    return einsum('b i j, b j d -> b i d', s, v)

def einsum_op_slice_0(q, k, v, slice_size):
    r = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype)
    for i in range(0, q.shape[0], slice_size):
        end = i + slice_size
        r[i:end] = einsum_op_compvis(q[i:end], k[i:end], v[i:end])
    return r

def einsum_op_slice_1(q, k, v, slice_size):
    r = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype)
    for i in range(0, q.shape[1], slice_size):
        end = i + slice_size
        r[:, i:end] = einsum_op_compvis(q[:, i:end], k, v)
    return r

def einsum_op_mps_v1(q, k, v):
    if q.shape[0] * q.shape[1] <= 2**16: # (512x512) max q.shape[1]: 4096
        return einsum_op_compvis(q, k, v)
    else:
        slice_size = math.floor(2**30 / (q.shape[0] * q.shape[1]))
        if slice_size % 4096 == 0:
            slice_size -= 1
        return einsum_op_slice_1(q, k, v, slice_size)

def einsum_op_mps_v2(q, k, v):
    if mem_total_gb > 8 and q.shape[0] * q.shape[1] <= 2**16:
        return einsum_op_compvis(q, k, v)
    else:
        return einsum_op_slice_0(q, k, v, 1)

def einsum_op_tensor_mem(q, k, v, max_tensor_mb):
    size_mb = q.shape[0] * q.shape[1] * k.shape[1] * q.element_size() // (1 << 20)
    if size_mb <= max_tensor_mb:
        return einsum_op_compvis(q, k, v)
    div = 1 << int((size_mb - 1) / max_tensor_mb).bit_length()
    if div <= q.shape[0]:
        return einsum_op_slice_0(q, k, v, q.shape[0] // div)
    return einsum_op_slice_1(q, k, v, max(q.shape[1] // div, 1))

def einsum_op_cuda(q, k, v):
    stats = torch.cuda.memory_stats(q.device)
    mem_active = stats['active_bytes.all.current']
    mem_reserved = stats['reserved_bytes.all.current']
    mem_free_cuda, _ = torch.cuda.mem_get_info(q.device)
    mem_free_torch = mem_reserved - mem_active
    mem_free_total = mem_free_cuda + mem_free_torch
    # Divide factor of safety as there's copying and fragmentation
    return einsum_op_tensor_mem(q, k, v, mem_free_total / 3.3 / (1 << 20))

def einsum_op(q, k, v):
    if q.device.type == 'cuda':
        return einsum_op_cuda(q, k, v)

    if q.device.type == 'mps':
        if mem_total_gb >= 32 and q.shape[0] % 32 != 0 and q.shape[0] * q.shape[1] < 2**18:
            return einsum_op_mps_v1(q, k, v)
        return einsum_op_mps_v2(q, k, v)

    # Smaller slices are faster due to L2/L3/SLC caches.
    # Tested on i7 with 8MB L3 cache.
    return einsum_op_tensor_mem(q, k, v, 32)

def split_cross_attention_forward_invokeAI(self, x, context=None, mask=None):
    h = self.heads

    q = self.to_q(x)
    context = default(context, x)

    context_k, context_v = hypernetwork.apply_hypernetworks(shared.loaded_hypernetworks, context)
    k = self.to_k(context_k)
    v = self.to_v(context_v)
    del context, context_k, context_v, x

    dtype = q.dtype
    if shared.opts.upcast_attn:
        q, k, v = q.float(), k.float(), v if v.device.type == 'mps' else v.float()

    with devices.without_autocast(disable=not shared.opts.upcast_attn):
        k = k * self.scale
    
        q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
        r = einsum_op(q, k, v)
    r = r.to(dtype)
    return self.to_out(rearrange(r, '(b h) n d -> b n (h d)', h=h))

# -- End of code from https://github.com/invoke-ai/InvokeAI --


# Based on Birch-san's modified implementation of sub-quadratic attention from https://github.com/Birch-san/diffusers/pull/1
# The sub_quad_attention_forward function is under the MIT License listed under Memory Efficient Attention in the Licenses section of the web UI interface
def sub_quad_attention_forward(self, x, context=None, mask=None):
    assert mask is None, "attention-mask not currently implemented for SubQuadraticCrossAttnProcessor."

    h = self.heads

    q = self.to_q(x)
    context = default(context, x)

    context_k, context_v = hypernetwork.apply_hypernetworks(shared.loaded_hypernetworks, context)
    k = self.to_k(context_k)
    v = self.to_v(context_v)
    del context, context_k, context_v, x

    q = q.unflatten(-1, (h, -1)).transpose(1,2).flatten(end_dim=1)
    k = k.unflatten(-1, (h, -1)).transpose(1,2).flatten(end_dim=1)
    v = v.unflatten(-1, (h, -1)).transpose(1,2).flatten(end_dim=1)

    dtype = q.dtype
    if shared.opts.upcast_attn:
        q, k = q.float(), k.float()

    x = sub_quad_attention(q, k, v, q_chunk_size=shared.cmd_opts.sub_quad_q_chunk_size, kv_chunk_size=shared.cmd_opts.sub_quad_kv_chunk_size, chunk_threshold=shared.cmd_opts.sub_quad_chunk_threshold, use_checkpoint=self.training)

    x = x.to(dtype)

    x = x.unflatten(0, (-1, h)).transpose(1,2).flatten(start_dim=2)

    out_proj, dropout = self.to_out
    x = out_proj(x)
    x = dropout(x)

    return x

def sub_quad_attention(q, k, v, q_chunk_size=1024, kv_chunk_size=None, kv_chunk_size_min=None, chunk_threshold=None, use_checkpoint=True):
    bytes_per_token = torch.finfo(q.dtype).bits//8
    batch_x_heads, q_tokens, _ = q.shape
    _, k_tokens, _ = k.shape
    qk_matmul_size_bytes = batch_x_heads * bytes_per_token * q_tokens * k_tokens

    if chunk_threshold is None:
        chunk_threshold_bytes = int(get_available_vram() * 0.9) if q.device.type == 'mps' else int(get_available_vram() * 0.7)
    elif chunk_threshold == 0:
        chunk_threshold_bytes = None
    else:
        chunk_threshold_bytes = int(0.01 * chunk_threshold * get_available_vram())

    if kv_chunk_size_min is None and chunk_threshold_bytes is not None:
        kv_chunk_size_min = chunk_threshold_bytes // (batch_x_heads * bytes_per_token * (k.shape[2] + v.shape[2]))
    elif kv_chunk_size_min == 0:
        kv_chunk_size_min = None

    if chunk_threshold_bytes is not None and qk_matmul_size_bytes <= chunk_threshold_bytes:
        # the big matmul fits into our memory limit; do everything in 1 chunk,
        # i.e. send it down the unchunked fast-path
        query_chunk_size = q_tokens
        kv_chunk_size = k_tokens

    with devices.without_autocast(disable=q.dtype == v.dtype):
        return efficient_dot_product_attention(
            q,
            k,
            v,
            query_chunk_size=q_chunk_size,
            kv_chunk_size=kv_chunk_size,
            kv_chunk_size_min = kv_chunk_size_min,
            use_checkpoint=use_checkpoint,
        )


def get_xformers_flash_attention_op(q, k, v):
    if not shared.cmd_opts.xformers_flash_attention:
        return None

    try:
        flash_attention_op = xformers.ops.MemoryEfficientAttentionFlashAttentionOp
        fw, bw = flash_attention_op
        if fw.supports(xformers.ops.fmha.Inputs(query=q, key=k, value=v, attn_bias=None)):
            return flash_attention_op
    except Exception as e:
        errors.display_once(e, "enabling flash attention")

    return None


def xformers_attention_forward(self, x, context=None, mask=None):
    h = self.heads
    q_in = self.to_q(x)
    context = default(context, x)

    context_k, context_v = hypernetwork.apply_hypernetworks(shared.loaded_hypernetworks, context)
    k_in = self.to_k(context_k)
    v_in = self.to_v(context_v)

    q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b n h d', h=h), (q_in, k_in, v_in))
    del q_in, k_in, v_in

    dtype = q.dtype
    if shared.opts.upcast_attn:
        q, k, v = q.float(), k.float(), v.float()

    out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None, op=get_xformers_flash_attention_op(q, k, v))

    out = out.to(dtype)

    out = rearrange(out, 'b n h d -> b n (h d)', h=h)
    return self.to_out(out)

# Based on Diffusers usage of scaled dot product attention from https://github.com/huggingface/diffusers/blob/c7da8fd23359a22d0df2741688b5b4f33c26df21/src/diffusers/models/cross_attention.py
# The scaled_dot_product_attention_forward function contains parts of code under Apache-2.0 license listed under Scaled Dot Product Attention in the Licenses section of the web UI interface
def scaled_dot_product_attention_forward(self, x, context=None, mask=None):
    batch_size, sequence_length, inner_dim = x.shape

    if mask is not None:
        mask = self.prepare_attention_mask(mask, sequence_length, batch_size)
        mask = mask.view(batch_size, self.heads, -1, mask.shape[-1])

    h = self.heads
    q_in = self.to_q(x)
    context = default(context, x)

    context_k, context_v = hypernetwork.apply_hypernetworks(shared.loaded_hypernetworks, context)
    k_in = self.to_k(context_k)
    v_in = self.to_v(context_v)

    head_dim = inner_dim // h
    q = q_in.view(batch_size, -1, h, head_dim).transpose(1, 2)
    k = k_in.view(batch_size, -1, h, head_dim).transpose(1, 2)
    v = v_in.view(batch_size, -1, h, head_dim).transpose(1, 2)
    
    del q_in, k_in, v_in

    dtype = q.dtype
    if shared.opts.upcast_attn:
        q, k, v = q.float(), k.float(), v.float()

    # the output of sdp = (batch, num_heads, seq_len, head_dim)
    hidden_states = torch.nn.functional.scaled_dot_product_attention(
        q, k, v, attn_mask=mask, dropout_p=0.0, is_causal=False
    )

    hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, h * head_dim)
    hidden_states = hidden_states.to(dtype)

    # linear proj
    hidden_states = self.to_out[0](hidden_states)
    # dropout
    hidden_states = self.to_out[1](hidden_states)
    return hidden_states

def scaled_dot_product_no_mem_attention_forward(self, x, context=None, mask=None):
    with torch.backends.cuda.sdp_kernel(enable_flash=True, enable_math=True, enable_mem_efficient=False):
        return scaled_dot_product_attention_forward(self, x, context, mask)

def cross_attention_attnblock_forward(self, x):
        h_ = x
        h_ = self.norm(h_)
        q1 = self.q(h_)
        k1 = self.k(h_)
        v = self.v(h_)

        # compute attention
        b, c, h, w = q1.shape

        q2 = q1.reshape(b, c, h*w)
        del q1

        q = q2.permute(0, 2, 1)   # b,hw,c
        del q2

        k = k1.reshape(b, c, h*w) # b,c,hw
        del k1

        h_ = torch.zeros_like(k, device=q.device)

        mem_free_total = get_available_vram()

        tensor_size = q.shape[0] * q.shape[1] * k.shape[2] * q.element_size()
        mem_required = tensor_size * 2.5
        steps = 1

        if mem_required > mem_free_total:
            steps = 2**(math.ceil(math.log(mem_required / mem_free_total, 2)))

        slice_size = q.shape[1] // steps if (q.shape[1] % steps) == 0 else q.shape[1]
        for i in range(0, q.shape[1], slice_size):
            end = i + slice_size

            w1 = torch.bmm(q[:, i:end], k)     # b,hw,hw    w[b,i,j]=sum_c q[b,i,c]k[b,c,j]
            w2 = w1 * (int(c)**(-0.5))
            del w1
            w3 = torch.nn.functional.softmax(w2, dim=2, dtype=q.dtype)
            del w2

            # attend to values
            v1 = v.reshape(b, c, h*w)
            w4 = w3.permute(0, 2, 1)   # b,hw,hw (first hw of k, second of q)
            del w3

            h_[:, :, i:end] = torch.bmm(v1, w4)     # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j]
            del v1, w4

        h2 = h_.reshape(b, c, h, w)
        del h_

        h3 = self.proj_out(h2)
        del h2

        h3 += x

        return h3
    
def xformers_attnblock_forward(self, x):
    try:
        h_ = x
        h_ = self.norm(h_)
        q = self.q(h_)
        k = self.k(h_)
        v = self.v(h_)
        b, c, h, w = q.shape
        q, k, v = map(lambda t: rearrange(t, 'b c h w -> b (h w) c'), (q, k, v))
        dtype = q.dtype
        if shared.opts.upcast_attn:
            q, k = q.float(), k.float()
        q = q.contiguous()
        k = k.contiguous()
        v = v.contiguous()
        out = xformers.ops.memory_efficient_attention(q, k, v, op=get_xformers_flash_attention_op(q, k, v))
        out = out.to(dtype)
        out = rearrange(out, 'b (h w) c -> b c h w', h=h)
        out = self.proj_out(out)
        return x + out
    except NotImplementedError:
        return cross_attention_attnblock_forward(self, x)

def sdp_attnblock_forward(self, x):
    h_ = x
    h_ = self.norm(h_)
    q = self.q(h_)
    k = self.k(h_)
    v = self.v(h_)
    b, c, h, w = q.shape
    q, k, v = map(lambda t: rearrange(t, 'b c h w -> b (h w) c'), (q, k, v))
    dtype = q.dtype
    if shared.opts.upcast_attn:
        q, k = q.float(), k.float()
    q = q.contiguous()
    k = k.contiguous()
    v = v.contiguous()
    out = torch.nn.functional.scaled_dot_product_attention(q, k, v, dropout_p=0.0, is_causal=False)
    out = out.to(dtype)
    out = rearrange(out, 'b (h w) c -> b c h w', h=h)
    out = self.proj_out(out)
    return x + out

def sdp_no_mem_attnblock_forward(self, x):
    with torch.backends.cuda.sdp_kernel(enable_flash=True, enable_math=True, enable_mem_efficient=False):
        return sdp_attnblock_forward(self, x)

def sub_quad_attnblock_forward(self, x):
    h_ = x
    h_ = self.norm(h_)
    q = self.q(h_)
    k = self.k(h_)
    v = self.v(h_)
    b, c, h, w = q.shape
    q, k, v = map(lambda t: rearrange(t, 'b c h w -> b (h w) c'), (q, k, v))
    q = q.contiguous()
    k = k.contiguous()
    v = v.contiguous()
    out = sub_quad_attention(q, k, v, q_chunk_size=shared.cmd_opts.sub_quad_q_chunk_size, kv_chunk_size=shared.cmd_opts.sub_quad_kv_chunk_size, chunk_threshold=shared.cmd_opts.sub_quad_chunk_threshold, use_checkpoint=self.training)
    out = rearrange(out, 'b (h w) c -> b c h w', h=h)
    out = self.proj_out(out)
    return x + out