aboutsummaryrefslogtreecommitdiff
path: root/modules/sd_samplers_cfg_denoiser.py
blob: a73d3b03692e29ee734fd0e0bad7cd144b92bf3d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
import torch
from modules import prompt_parser, devices, sd_samplers_common

from modules.shared import opts, state
import modules.shared as shared
from modules.script_callbacks import CFGDenoiserParams, cfg_denoiser_callback
from modules.script_callbacks import CFGDenoisedParams, cfg_denoised_callback
from modules.script_callbacks import AfterCFGCallbackParams, cfg_after_cfg_callback


def catenate_conds(conds):
    if not isinstance(conds[0], dict):
        return torch.cat(conds)

    return {key: torch.cat([x[key] for x in conds]) for key in conds[0].keys()}


def subscript_cond(cond, a, b):
    if not isinstance(cond, dict):
        return cond[a:b]

    return {key: vec[a:b] for key, vec in cond.items()}


def pad_cond(tensor, repeats, empty):
    if not isinstance(tensor, dict):
        return torch.cat([tensor, empty.repeat((tensor.shape[0], repeats, 1))], axis=1)

    tensor['crossattn'] = pad_cond(tensor['crossattn'], repeats, empty)
    return tensor


class CFGDenoiser(torch.nn.Module):
    """
    Classifier free guidance denoiser. A wrapper for stable diffusion model (specifically for unet)
    that can take a noisy picture and produce a noise-free picture using two guidances (prompts)
    instead of one. Originally, the second prompt is just an empty string, but we use non-empty
    negative prompt.
    """

    def __init__(self, sampler):
        super().__init__()
        self.model_wrap = None
        self.mask = None
        self.nmask = None
        self.init_latent = None
        self.steps = None
        """number of steps as specified by user in UI"""

        self.total_steps = None
        """expected number of calls to denoiser calculated from self.steps and specifics of the selected sampler"""

        self.step = 0
        self.image_cfg_scale = None
        self.padded_cond_uncond = False
        self.padded_cond_uncond_v0 = False
        self.sampler = sampler
        self.model_wrap = None
        self.p = None

        # NOTE: masking before denoising can cause the original latents to be oversmoothed
        # as the original latents do not have noise
        self.mask_before_denoising = False

    @property
    def inner_model(self):
        raise NotImplementedError()

    def combine_denoised(self, x_out, conds_list, uncond, cond_scale):
        denoised_uncond = x_out[-uncond.shape[0]:]
        denoised = torch.clone(denoised_uncond)

        for i, conds in enumerate(conds_list):
            for cond_index, weight in conds:
                denoised[i] += (x_out[cond_index] - denoised_uncond[i]) * (weight * cond_scale)

        return denoised

    def combine_denoised_for_edit_model(self, x_out, cond_scale):
        out_cond, out_img_cond, out_uncond = x_out.chunk(3)
        denoised = out_uncond + cond_scale * (out_cond - out_img_cond) + self.image_cfg_scale * (out_img_cond - out_uncond)

        return denoised

    def get_pred_x0(self, x_in, x_out, sigma):
        return x_out

    def update_inner_model(self):
        self.model_wrap = None

        c, uc = self.p.get_conds()
        self.sampler.sampler_extra_args['cond'] = c
        self.sampler.sampler_extra_args['uncond'] = uc

    def pad_cond_uncond(self, cond, uncond):
        empty = shared.sd_model.cond_stage_model_empty_prompt
        num_repeats = (cond.shape[1] - uncond.shape[1]) // empty.shape[1]

        if num_repeats < 0:
            cond = pad_cond(cond, -num_repeats, empty)
            self.padded_cond_uncond = True
        elif num_repeats > 0:
            uncond = pad_cond(uncond, num_repeats, empty)
            self.padded_cond_uncond = True

        return cond, uncond

    def pad_cond_uncond_v0(self, cond, uncond):
        """
        Pads the 'uncond' tensor to match the shape of the 'cond' tensor.

        If 'uncond' is a dictionary, it is assumed that the 'crossattn' key holds the tensor to be padded.
        If 'uncond' is a tensor, it is padded directly.

        If the number of columns in 'uncond' is less than the number of columns in 'cond', the last column of 'uncond'
        is repeated to match the number of columns in 'cond'.

        If the number of columns in 'uncond' is greater than the number of columns in 'cond', 'uncond' is truncated
        to match the number of columns in 'cond'.

        Args:
            cond (torch.Tensor or DictWithShape): The condition tensor to match the shape of 'uncond'.
            uncond (torch.Tensor or DictWithShape): The tensor to be padded, or a dictionary containing the tensor to be padded.

        Returns:
            tuple: A tuple containing the 'cond' tensor and the padded 'uncond' tensor.

        Note:
            This is the padding that was always used in DDIM before version 1.6.0
        """

        is_dict_cond = isinstance(uncond, dict)
        uncond_vec = uncond['crossattn'] if is_dict_cond else uncond

        if uncond_vec.shape[1] < cond.shape[1]:
            last_vector = uncond_vec[:, -1:]
            last_vector_repeated = last_vector.repeat([1, cond.shape[1] - uncond_vec.shape[1], 1])
            uncond_vec = torch.hstack([uncond_vec, last_vector_repeated])
            self.padded_cond_uncond_v0 = True
        elif uncond_vec.shape[1] > cond.shape[1]:
            uncond_vec = uncond_vec[:, :cond.shape[1]]
            self.padded_cond_uncond_v0 = True

        if is_dict_cond:
            uncond['crossattn'] = uncond_vec
        else:
            uncond = uncond_vec

        return cond, uncond

    def forward(self, x, sigma, uncond, cond, cond_scale, s_min_uncond, image_cond):
        if state.interrupted or state.skipped:
            raise sd_samplers_common.InterruptedException

        if sd_samplers_common.apply_refiner(self):
            cond = self.sampler.sampler_extra_args['cond']
            uncond = self.sampler.sampler_extra_args['uncond']

        # at self.image_cfg_scale == 1.0 produced results for edit model are the same as with normal sampling,
        # so is_edit_model is set to False to support AND composition.
        is_edit_model = shared.sd_model.cond_stage_key == "edit" and self.image_cfg_scale is not None and self.image_cfg_scale != 1.0

        conds_list, tensor = prompt_parser.reconstruct_multicond_batch(cond, self.step)
        uncond = prompt_parser.reconstruct_cond_batch(uncond, self.step)

        assert not is_edit_model or all(len(conds) == 1 for conds in conds_list), "AND is not supported for InstructPix2Pix checkpoint (unless using Image CFG scale = 1.0)"

        # If we use masks, blending between the denoised and original latent images occurs here.
        def apply_blend(current_latent):
            blended_latent = current_latent * self.nmask + self.init_latent * self.mask

            if self.p.scripts is not None:
                from modules import scripts
                mba = scripts.MaskBlendArgs(current_latent, self.nmask, self.init_latent, self.mask, blended_latent, denoiser=self, sigma=sigma)
                self.p.scripts.on_mask_blend(self.p, mba)
                blended_latent = mba.blended_latent

            return blended_latent

        # Blend in the original latents (before)
        if self.mask_before_denoising and self.mask is not None:
            x = apply_blend(x)

        batch_size = len(conds_list)
        repeats = [len(conds_list[i]) for i in range(batch_size)]

        if shared.sd_model.model.conditioning_key == "crossattn-adm":
            image_uncond = torch.zeros_like(image_cond)
            make_condition_dict = lambda c_crossattn, c_adm: {"c_crossattn": [c_crossattn], "c_adm": c_adm}
        else:
            image_uncond = image_cond
            if isinstance(uncond, dict):
                make_condition_dict = lambda c_crossattn, c_concat: {**c_crossattn, "c_concat": [c_concat]}
            else:
                make_condition_dict = lambda c_crossattn, c_concat: {"c_crossattn": [c_crossattn], "c_concat": [c_concat]}

        if not is_edit_model:
            x_in = torch.cat([torch.stack([x[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [x])
            sigma_in = torch.cat([torch.stack([sigma[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [sigma])
            image_cond_in = torch.cat([torch.stack([image_cond[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [image_uncond])
        else:
            x_in = torch.cat([torch.stack([x[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [x] + [x])
            sigma_in = torch.cat([torch.stack([sigma[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [sigma] + [sigma])
            image_cond_in = torch.cat([torch.stack([image_cond[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [image_uncond] + [torch.zeros_like(self.init_latent)])

        denoiser_params = CFGDenoiserParams(x_in, image_cond_in, sigma_in, state.sampling_step, state.sampling_steps, tensor, uncond, self)
        cfg_denoiser_callback(denoiser_params)
        x_in = denoiser_params.x
        image_cond_in = denoiser_params.image_cond
        sigma_in = denoiser_params.sigma
        tensor = denoiser_params.text_cond
        uncond = denoiser_params.text_uncond
        skip_uncond = False

        # alternating uncond allows for higher thresholds without the quality loss normally expected from raising it
        if self.step % 2 and s_min_uncond > 0 and sigma[0] < s_min_uncond and not is_edit_model:
            skip_uncond = True
            x_in = x_in[:-batch_size]
            sigma_in = sigma_in[:-batch_size]

        self.padded_cond_uncond = False
        self.padded_cond_uncond_v0 = False
        if shared.opts.pad_cond_uncond_v0 and tensor.shape[1] != uncond.shape[1]:
            tensor, uncond = self.pad_cond_uncond_v0(tensor, uncond)
        elif shared.opts.pad_cond_uncond and tensor.shape[1] != uncond.shape[1]:
            tensor, uncond = self.pad_cond_uncond(tensor, uncond)

        if tensor.shape[1] == uncond.shape[1] or skip_uncond:
            if is_edit_model:
                cond_in = catenate_conds([tensor, uncond, uncond])
            elif skip_uncond:
                cond_in = tensor
            else:
                cond_in = catenate_conds([tensor, uncond])

            if shared.opts.batch_cond_uncond:
                x_out = self.inner_model(x_in, sigma_in, cond=make_condition_dict(cond_in, image_cond_in))
            else:
                x_out = torch.zeros_like(x_in)
                for batch_offset in range(0, x_out.shape[0], batch_size):
                    a = batch_offset
                    b = a + batch_size
                    x_out[a:b] = self.inner_model(x_in[a:b], sigma_in[a:b], cond=make_condition_dict(subscript_cond(cond_in, a, b), image_cond_in[a:b]))
        else:
            x_out = torch.zeros_like(x_in)
            batch_size = batch_size*2 if shared.opts.batch_cond_uncond else batch_size
            for batch_offset in range(0, tensor.shape[0], batch_size):
                a = batch_offset
                b = min(a + batch_size, tensor.shape[0])

                if not is_edit_model:
                    c_crossattn = subscript_cond(tensor, a, b)
                else:
                    c_crossattn = torch.cat([tensor[a:b]], uncond)

                x_out[a:b] = self.inner_model(x_in[a:b], sigma_in[a:b], cond=make_condition_dict(c_crossattn, image_cond_in[a:b]))

            if not skip_uncond:
                x_out[-uncond.shape[0]:] = self.inner_model(x_in[-uncond.shape[0]:], sigma_in[-uncond.shape[0]:], cond=make_condition_dict(uncond, image_cond_in[-uncond.shape[0]:]))

        denoised_image_indexes = [x[0][0] for x in conds_list]
        if skip_uncond:
            fake_uncond = torch.cat([x_out[i:i+1] for i in denoised_image_indexes])
            x_out = torch.cat([x_out, fake_uncond])  # we skipped uncond denoising, so we put cond-denoised image to where the uncond-denoised image should be

        denoised_params = CFGDenoisedParams(x_out, state.sampling_step, state.sampling_steps, self.inner_model)
        cfg_denoised_callback(denoised_params)

        devices.test_for_nans(x_out, "unet")

        if is_edit_model:
            denoised = self.combine_denoised_for_edit_model(x_out, cond_scale)
        elif skip_uncond:
            denoised = self.combine_denoised(x_out, conds_list, uncond, 1.0)
        else:
            denoised = self.combine_denoised(x_out, conds_list, uncond, cond_scale)

        # Blend in the original latents (after)
        if not self.mask_before_denoising and self.mask is not None:
            denoised = apply_blend(denoised)

        self.sampler.last_latent = self.get_pred_x0(torch.cat([x_in[i:i + 1] for i in denoised_image_indexes]), torch.cat([x_out[i:i + 1] for i in denoised_image_indexes]), sigma)

        if opts.live_preview_content == "Prompt":
            preview = self.sampler.last_latent
        elif opts.live_preview_content == "Negative prompt":
            preview = self.get_pred_x0(x_in[-uncond.shape[0]:], x_out[-uncond.shape[0]:], sigma)
        else:
            preview = self.get_pred_x0(torch.cat([x_in[i:i+1] for i in denoised_image_indexes]), torch.cat([denoised[i:i+1] for i in denoised_image_indexes]), sigma)

        sd_samplers_common.store_latent(preview)

        after_cfg_callback_params = AfterCFGCallbackParams(denoised, state.sampling_step, state.sampling_steps)
        cfg_after_cfg_callback(after_cfg_callback_params)
        denoised = after_cfg_callback_params.x

        self.step += 1
        return denoised