aboutsummaryrefslogtreecommitdiff
path: root/modules/swinir.py
blob: 8c5344952a0942c8f9dcd67fadd11847f0300042 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import sys
import traceback
import cv2
import os
import contextlib
import numpy as np
from PIL import Image
import torch
import modules.images
from modules.shared import cmd_opts, opts, device
from modules.swinir_arch import SwinIR as net

precision_scope = (
    torch.autocast if cmd_opts.precision == "autocast" else contextlib.nullcontext
)


def load_model(filename, scale=4):
    model = net(
        upscale=scale,
        in_chans=3,
        img_size=64,
        window_size=8,
        img_range=1.0,
        depths=[6, 6, 6, 6, 6, 6, 6, 6, 6],
        embed_dim=240,
        num_heads=[8, 8, 8, 8, 8, 8, 8, 8, 8],
        mlp_ratio=2,
        upsampler="nearest+conv",
        resi_connection="3conv",
    )

    pretrained_model = torch.load(filename)
    model.load_state_dict(pretrained_model["params_ema"], strict=True)
    if not cmd_opts.no_half:
        model = model.half()
    return model


def load_models(dirname):
    for file in os.listdir(dirname):
        path = os.path.join(dirname, file)
        model_name, extension = os.path.splitext(file)

        if extension != ".pt" and extension != ".pth":
            continue

        try:
            modules.shared.sd_upscalers.append(UpscalerSwin(path, model_name))
        except Exception:
            print(f"Error loading SwinIR model: {path}", file=sys.stderr)
            print(traceback.format_exc(), file=sys.stderr)


def upscale(
    img,
    model,
    tile=opts.SWIN_tile,
    tile_overlap=opts.SWIN_tile_overlap,
    window_size=8,
    scale=4,
):
    img = np.array(img)
    img = img[:, :, ::-1]
    img = np.moveaxis(img, 2, 0) / 255
    img = torch.from_numpy(img).float()
    img = img.unsqueeze(0).to(device)
    with torch.no_grad(), precision_scope("cuda"):
        _, _, h_old, w_old = img.size()
        h_pad = (h_old // window_size + 1) * window_size - h_old
        w_pad = (w_old // window_size + 1) * window_size - w_old
        img = torch.cat([img, torch.flip(img, [2])], 2)[:, :, : h_old + h_pad, :]
        img = torch.cat([img, torch.flip(img, [3])], 3)[:, :, :, : w_old + w_pad]
        output = inference(img, model, tile, tile_overlap, window_size, scale)
        output = output[..., : h_old * scale, : w_old * scale]
        output = output.data.squeeze().float().cpu().clamp_(0, 1).numpy()
        if output.ndim == 3:
            output = np.transpose(
                output[[2, 1, 0], :, :], (1, 2, 0)
            )  # CHW-RGB to HCW-BGR
        output = (output * 255.0).round().astype(np.uint8)  # float32 to uint8
        return Image.fromarray(output, "RGB")


def inference(img, model, tile, tile_overlap, window_size, scale):
    # test the image tile by tile
    b, c, h, w = img.size()
    tile = min(tile, h, w)
    assert tile % window_size == 0, "tile size should be a multiple of window_size"
    sf = scale

    stride = tile - tile_overlap
    h_idx_list = list(range(0, h - tile, stride)) + [h - tile]
    w_idx_list = list(range(0, w - tile, stride)) + [w - tile]
    E = torch.zeros(b, c, h * sf, w * sf, dtype=torch.half, device=device).type_as(img)
    W = torch.zeros_like(E, dtype=torch.half, device=device)

    for h_idx in h_idx_list:
        for w_idx in w_idx_list:
            in_patch = img[..., h_idx : h_idx + tile, w_idx : w_idx + tile]
            out_patch = model(in_patch)
            out_patch_mask = torch.ones_like(out_patch)

            E[
                ..., h_idx * sf : (h_idx + tile) * sf, w_idx * sf : (w_idx + tile) * sf
            ].add_(out_patch)
            W[
                ..., h_idx * sf : (h_idx + tile) * sf, w_idx * sf : (w_idx + tile) * sf
            ].add_(out_patch_mask)
    output = E.div_(W)

    return output


class UpscalerSwin(modules.images.Upscaler):
    def __init__(self, filename, title):
        self.name = title
        self.model = load_model(filename)

    def do_upscale(self, img):
        model = self.model.to(device)
        img = upscale(img, model)
        return img