aboutsummaryrefslogtreecommitdiff
path: root/modules/swinir_model.py
blob: fbd11f84381ef30dd54043dffce9c655ca9165cf (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import contextlib
import os

import numpy as np
import torch
from PIL import Image
from basicsr.utils.download_util import load_file_from_url
from tqdm import tqdm

from modules import modelloader
from modules.shared import cmd_opts, opts, device
from modules.swinir_model_arch import SwinIR as net
from modules.upscaler import Upscaler, UpscalerData

precision_scope = (
    torch.autocast if cmd_opts.precision == "autocast" else contextlib.nullcontext
)


class UpscalerSwinIR(Upscaler):
    def __init__(self, dirname):
        self.name = "SwinIR"
        self.model_url = "https://github.com/JingyunLiang/SwinIR/releases/download/v0.0" \
                         "/003_realSR_BSRGAN_DFOWMFC_s64w8_SwinIR" \
                         "-L_x4_GAN.pth "
        self.model_name = "SwinIR 4x"
        self.user_path = dirname
        super().__init__()
        scalers = []
        model_files = self.find_models(ext_filter=[".pt", ".pth"])
        for model in model_files:
            if "http" in model:
                name = self.model_name
            else:
                name = modelloader.friendly_name(model)
            model_data = UpscalerData(name, model, self)
            scalers.append(model_data)
        self.scalers = scalers

    def do_upscale(self, img, model_file):
        model = self.load_model(model_file)
        if model is None:
            return img
        model = model.to(device)
        img = upscale(img, model)
        try:
            torch.cuda.empty_cache()
        except:
            pass
        return img

    def load_model(self, path, scale=4):
        if "http" in path:
            dl_name = "%s%s" % (self.model_name.replace(" ", "_"), ".pth")
            filename = load_file_from_url(url=path, model_dir=self.model_path, file_name=dl_name, progress=True)
        else:
            filename = path
        if filename is None or not os.path.exists(filename):
            return None
        model = net(
            upscale=scale,
            in_chans=3,
            img_size=64,
            window_size=8,
            img_range=1.0,
            depths=[6, 6, 6, 6, 6, 6, 6, 6, 6],
            embed_dim=240,
            num_heads=[8, 8, 8, 8, 8, 8, 8, 8, 8],
            mlp_ratio=2,
            upsampler="nearest+conv",
            resi_connection="3conv",
        )

        pretrained_model = torch.load(filename)
        model.load_state_dict(pretrained_model["params_ema"], strict=True)
        if not cmd_opts.no_half:
            model = model.half()
        return model


def upscale(
        img,
        model,
        tile=opts.SWIN_tile,
        tile_overlap=opts.SWIN_tile_overlap,
        window_size=8,
        scale=4,
):
    img = np.array(img)
    img = img[:, :, ::-1]
    img = np.moveaxis(img, 2, 0) / 255
    img = torch.from_numpy(img).float()
    img = img.unsqueeze(0).to(device)
    with torch.no_grad(), precision_scope("cuda"):
        _, _, h_old, w_old = img.size()
        h_pad = (h_old // window_size + 1) * window_size - h_old
        w_pad = (w_old // window_size + 1) * window_size - w_old
        img = torch.cat([img, torch.flip(img, [2])], 2)[:, :, : h_old + h_pad, :]
        img = torch.cat([img, torch.flip(img, [3])], 3)[:, :, :, : w_old + w_pad]
        output = inference(img, model, tile, tile_overlap, window_size, scale)
        output = output[..., : h_old * scale, : w_old * scale]
        output = output.data.squeeze().float().cpu().clamp_(0, 1).numpy()
        if output.ndim == 3:
            output = np.transpose(
                output[[2, 1, 0], :, :], (1, 2, 0)
            )  # CHW-RGB to HCW-BGR
        output = (output * 255.0).round().astype(np.uint8)  # float32 to uint8
        return Image.fromarray(output, "RGB")


def inference(img, model, tile, tile_overlap, window_size, scale):
    # test the image tile by tile
    b, c, h, w = img.size()
    tile = min(tile, h, w)
    assert tile % window_size == 0, "tile size should be a multiple of window_size"
    sf = scale

    stride = tile - tile_overlap
    h_idx_list = list(range(0, h - tile, stride)) + [h - tile]
    w_idx_list = list(range(0, w - tile, stride)) + [w - tile]
    E = torch.zeros(b, c, h * sf, w * sf, dtype=torch.half, device=device).type_as(img)
    W = torch.zeros_like(E, dtype=torch.half, device=device)

    with tqdm(total=len(h_idx_list) * len(w_idx_list), desc="SwinIR tiles") as pbar:
        for h_idx in h_idx_list:
            for w_idx in w_idx_list:
                in_patch = img[..., h_idx: h_idx + tile, w_idx: w_idx + tile]
                out_patch = model(in_patch)
                out_patch_mask = torch.ones_like(out_patch)

                E[
                ..., h_idx * sf: (h_idx + tile) * sf, w_idx * sf: (w_idx + tile) * sf
                ].add_(out_patch)
                W[
                ..., h_idx * sf: (h_idx + tile) * sf, w_idx * sf: (w_idx + tile) * sf
                ].add_(out_patch_mask)
                pbar.update(1)
    output = E.div_(W)

    return output