aboutsummaryrefslogtreecommitdiff
path: root/venv/Lib/site-packages/aenum/doc/aenum.rst
blob: 42ef0d3cce46b3179a7270cffa986b0f83f3c3f7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
``aenum`` --- support for advanced enumerations, namedtuples, and constants
===========================================================================

.. :synopsis:: enumerations are sets of symbolic names bound to unique,
    constant values; namedtuples are fixed- or variable-length
    tuples with the positions addressable by field name as well as by index;
    constants are classes of named constants that cannot be rebound.
.. :moduleauthor:: Ethan Furman <ethan@stoneleaf.us>

----------------

An ``Enum`` is a set of symbolic names (members) bound to unique, constant
values.  Within an enumeration, the members can be compared by identity, and
the enumeration itself can be iterated over.

A ``NamedTuple`` is a class-based, fixed-length tuple with a name for each
possible position accessible using attribute-access notation.

A ``NamedConstant`` is a class whose members cannot be rebound;  it lacks all
other ``Enum`` capabilities, however; consequently, it can have duplicate
values.  There is also a ``module`` function that can insert the
``NamedConstant`` class into ``sys.modules`` where it will appear to be a
module whose top-level names cannot be rebound.

.. note::
    ``constant`` refers to names not being rebound; mutable objects can be
     mutated.


Module Contents
---------------

This module defines five enumeration classes that can be used to define unique
sets of names and values, one ``Enum`` class decorator, one ``NamedTuple``
class, one ``NamedConstant`` class, and several helpers.

``NamedConstant``

NamedConstant class for creating groups of constants.  These names cannot be
rebound to other values.

``Enum``

Base class for creating enumerated constants.  See section `Enum Functional API`_
for an alternate construction syntax.

``AddValue``

Flag specifying that ``_generate_next_value_`` should always be called to
provide the initial value for an enum member.

``MultiValue``

Flag specifying that each item of tuple value is a separate value for that
member; the first tuple item is the canonical one.

``NoAlias``

Flag specifying that duplicate valued members are distinct and not aliases;
by-value lookups are disabled.

``Unique``

Flag specifying that duplicate valued members are not allowed.

.. note::
    The flags are inherited by the enumeration's subclasses.  To use them in
    Python 2 assign to ``_settings_`` in the class body.

``IntEnum``

Base class for creating enumerated constants that are also subclasses of ``int``.

``AutoNumberEnum``

Derived class that automatically assigns an ``int`` value to each member.

``OrderedEnum``

Derived class that adds ``<``, ``<=``, ``>=``, and ``>`` methods to an ``Enum``.

``UniqueEnum``

Derived class that ensures only one name is bound to any one value.

``unique``

Enum class decorator that ensures only one name is bound to any one value.

.. note::

    the ``UniqueEnum`` class, the ``unique`` decorator, and the Unique
    flag all do the same thing; you do not need to use more than one of
    them at the same time.

``NamedTuple``

Base class for `creating NamedTuples`_, either by subclassing or via it's
functional API.

``constant``

Descriptor to add constant values to an ``Enum``, or advanced constants to
``NamedConstant``.

``convert``

Helper to transform target global variables into an ``Enum``.

``enum``

Helper for specifying keyword arguments when creating ``Enum`` members.

``export``

Helper for inserting ``Enum`` members and ``NamedConstant`` constants into a
namespace (usually ``globals()``.

``extend_enum``

Helper for adding new ``Enum`` members, both stdlib and aenum.

``module``

Function to take a ``NamedConstant`` or ``Enum`` class and insert it into
``sys.modules`` with the affect of a module whose top-level constant and
member names cannot be rebound.

``skip``

Descriptor to add a normal (non-``Enum`` member) attribute to an ``Enum``
or ``NamedConstant``.


Creating an Enum
----------------

Enumerations are created using the ``class`` syntax, which makes them
easy to read and write.  An alternative creation method is described in
`Enum Functional API`_.  To define an enumeration, subclass ``Enum`` as
follows::

    >>> from aenum import Enum
    >>> class Color(Enum):
    ...     red = 1
    ...     green = 2
    ...     blue = 3

*Nomenclature*

  - The class ``Color`` is an *enumeration* (or *enum*)
  - The attributes ``Color.red``, ``Color.green``, etc., are
    *enumeration members* (or *enum members*).
  - The enum members have *names* and *values* (the name of
    ``Color.red`` is ``red``, the value of ``Color.blue`` is
    ``3``, etc.)

.. note::

    Even though we use the ``class`` syntax to create Enums, Enums
    are not normal Python classes.  See `How are Enums different?`_ for
    more details.

Enumeration members have human readable string representations::

    >>> print(Color.red)
    Color.red

...while their ``repr`` has more information::

    >>> print(repr(Color.red))
    <Color.red: 1>

The *type* of an enumeration member is the enumeration it belongs to::

    >>> type(Color.red)
    <aenum 'Color'>
    >>> isinstance(Color.green, Color)
    True

Enumerations support iteration.  In Python 3.x definition order is used; in
Python 2.x the definition order is not available, but class attribute
``_order_`` is supported;  otherwise, value order is used if posible,
otherwise alphabetical name order is used::

    >>> class Shake(Enum):
    ...   _order_ = 'vanilla chocolate cookies mint'  # only needed in 2.x
    ...   vanilla = 7
    ...   chocolate = 4
    ...   cookies = 9
    ...   mint = 3
    ...
    >>> for shake in Shake:
    ...   print(shake)
    ...
    Shake.vanilla
    Shake.chocolate
    Shake.cookies
    Shake.mint

The ``_order_`` attribute is always removed, but in 3.x it is also used to
verify that definition order is the same (useful for py2&3 code bases);
however, in the stdlib version it will be ignored and not removed.

.. note::

    To maintain compatibility with Python 3.4 and 3.5, use __order__
    instead (double leading and trailing underscores).

Enumeration members are hashable, so they can be used in dictionaries and sets::

    >>> apples = {}
    >>> apples[Color.red] = 'red delicious'
    >>> apples[Color.green] = 'granny smith'
    >>> apples == {Color.red: 'red delicious', Color.green: 'granny smith'}
    True

In Python 3 the class syntax has a few extra advancements::

    --> class Color(
    ...         Enum,
    ...         settings=(AddValue, MultiValue, NoAlias, Unique),
    ...         init='field_name1 field_name2 ...',
    ...         start=7,
    ...         )
    ...

``start`` is used to specify the starting value for the first member::

    --> class Count(Enum, start=11):
    ...     eleven
    ...     twelve
    ...
    --> Count.twelve.value == 12
    True

``init`` specifies the attribute names to store creation values to::

    --> class Planet(Enum, init='mass radius'):
    ...     MERCURY = (3.303e+23, 2.4397e6)
    ...     EARTH   = (5.976e+24, 6.37814e6)
    ...
    --> Planet.EARTH.value
    (5.976e+24, 6378140.0)
    --> Planet.EARTH.radius
    2.4397e6

The various settings enable special behavior:

- ``AddValue`` calls a user supplied ``_generate_next_value_`` to provide
  the initial value
- ``MultiValue`` allows multiple values per member instead of the usual 1
- ``NoAlias`` allows different members to have the same value
- ``Unique`` disallows different members to have the same value

.. note::

    To use these features in Python 2 use the _sundered_ versions of
    the names in the class body:  ``_start_``, ``_init_``, ``_settings_``.


Programmatic access to enumeration members and their attributes
---------------------------------------------------------------

Sometimes it's useful to access members in enumerations programmatically (i.e.
situations where ``Color.red`` won't do because the exact color is not known
at program-writing time).  ``Enum`` allows such access::

    >>> Color(1)
    <Color.red: 1>
    >>> Color(3)
    <Color.blue: 3>

If you want to access enum members by *name*, use item access::

    >>> Color['red']
    <Color.red: 1>
    >>> Color['green']
    <Color.green: 2>

If have an enum member and need its ``name`` or ``value``::

    >>> member = Color.red
    >>> member.name
    'red'
    >>> member.value
    1


Duplicating enum members and values
-----------------------------------

Having two enum members (or any other attribute) with the same name is invalid;
in Python 3.x this would raise an error, but in Python 2.x the second member
simply overwrites the first::

    # python 2.x
    --> class Shape(Enum):
    ...   square = 2
    ...   square = 3
    ...
    --> Shape.square
    <Shape.square: 3>

    # python 3.x
    --> class Shape(Enum):
    ...   square = 2
    ...   square = 3
    Traceback (most recent call last):
    ...
    TypeError: Attempted to reuse key: 'square'

However, two enum members are allowed to have the same value.  Given two members
A and B with the same value (and A defined first), B is an alias to A.  By-value
lookup of the value of A and B will return A.  By-name lookup of B will also
return A::

    >>> class Shape(Enum):
    ...   _order_ = 'square diamond circle'  # needed in 2.x
    ...   square = 2
    ...   diamond = 1
    ...   circle = 3
    ...   alias_for_square = 2
    ...
    >>> Shape.square
    <Shape.square: 2>
    >>> Shape.alias_for_square
    <Shape.square: 2>
    >>> Shape(2)
    <Shape.square: 2>


Allowing aliases is not always desirable.  ``unique`` can be used to ensure
that none exist in a particular enumeration::

    >>> from aenum import unique
    >>> @unique
    ... class Mistake(Enum):
    ...   _order_ = 'one two three'  # only needed in 2.x
    ...   one = 1
    ...   two = 2
    ...   three = 3
    ...   four = 3
    Traceback (most recent call last):
    ...
    ValueError: duplicate names found in <aenum 'Mistake'>: four -> three

Iterating over the members of an enum does not provide the aliases::

    >>> list(Shape)
    [<Shape.square: 2>, <Shape.diamond: 1>, <Shape.circle: 3>]

The special attribute ``__members__`` is a dictionary mapping names to members.
It includes all names defined in the enumeration, including the aliases::

    >>> for name, member in sorted(Shape.__members__.items()):
    ...   name, member
    ...
    ('alias_for_square', <Shape.square: 2>)
    ('circle', <Shape.circle: 3>)
    ('diamond', <Shape.diamond: 1>)
    ('square', <Shape.square: 2>)

The ``__members__`` attribute can be used for detailed programmatic access to
the enumeration members.  For example, finding all the aliases::

    >>> [n for n, mbr in Shape.__members__.items() if mbr.name != n]
    ['alias_for_square']

Comparisons
-----------

Enumeration members are compared by identity::

    >>> Color.red is Color.red
    True
    >>> Color.red is Color.blue
    False
    >>> Color.red is not Color.blue
    True

Ordered comparisons between enumeration values are *not* supported.  Enum
members are not integers (but see `IntEnum`_ below)::

    >>> Color.red < Color.blue
    Traceback (most recent call last):
      File "<stdin>", line 1, in <module>
    TypeError: unorderable types: Color() < Color()

.. warning::

    In Python 2 *everything* is ordered, even though the ordering may not
    make sense.  If you want your enumerations to have a sensible ordering
    consider using an `OrderedEnum`_.


Equality comparisons are defined though::

    >>> Color.blue == Color.red
    False
    >>> Color.blue != Color.red
    True
    >>> Color.blue == Color.blue
    True

Comparisons against non-enumeration values will always compare not equal
(again, ``IntEnum`` was explicitly designed to behave differently, see
below)::

    >>> Color.blue == 2
    False


Allowed members and attributes of enumerations
----------------------------------------------

The examples above use integers for enumeration values.  Using integers is
short and handy (and provided by default by the `Enum Functional API`_), but not
strictly enforced.  In the vast majority of use-cases, one doesn't care what
the actual value of an enumeration is.  But if the value *is* important,
enumerations can have arbitrary values.

Enumerations are Python classes, and can have methods and special methods as
usual.  If we have this enumeration::

    >>> class Mood(Enum):
    ...   funky = 1
    ...   happy = 3
    ...
    ...   def describe(self):
    ...     # self is the member here
    ...     return self.name, self.value
    ...
    ...   def __str__(self):
    ...     return 'my custom str! {0}'.format(self.value)
    ...
    ...   @classmethod
    ...   def favorite_mood(cls):
    ...     # cls here is the enumeration
    ...     return cls.happy

Then::

    >>> Mood.favorite_mood()
    <Mood.happy: 3>
    >>> Mood.happy.describe()
    ('happy', 3)
    >>> str(Mood.funky)
    'my custom str! 1'

The rules for what is allowed are as follows: _sunder_ names (starting and
ending with a single underscore) are reserved by enum and cannot be used;
all other attributes defined within an enumeration will become members of this
enumeration, with the exception of *__dunder__* names and descriptors (methods
are also descriptors).

.. note::

    If your enumeration defines ``__new__`` and/or ``__init__`` then
    whatever value(s) were given to the enum member will be passed into
    those methods.  See `Planet`_ for an example.


Restricted Enum subclassing
---------------------------

A new `Enum` class must have one base Enum class, up to one concrete
data type, and as many `object`-based mixin classes as needed.  The
order of these base classes is::

    def EnumName([mix-in, ...,] [data-type,] base-enum):
        pass

Also, subclassing an enumeration is allowed only if the enumeration does not define

any members.  So this is forbidden::

    >>> class MoreColor(Color):
    ...   pink = 17
    Traceback (most recent call last):
    ...
    TypeError: <aenum 'MoreColor'> cannot extend <aenum 'Color'>

But this is allowed::

    >>> class Foo(Enum):
    ...   def some_behavior(self):
    ...     pass
    ...
    >>> class Bar(Foo):
    ...   happy = 1
    ...   sad = 2
    ...

Allowing subclassing of enums that define members would lead to a violation of
some important invariants of types and instances.  On the other hand, it makes
sense to allow sharing some common behavior between a group of enumerations.
(See `OrderedEnum`_ for an example.)


Pickling
--------

Enumerations can be pickled and unpickled::

    >>> from aenum.test import Fruit
    >>> from pickle import dumps, loads
    >>> Fruit.tomato is loads(dumps(Fruit.tomato, 2))
    True

The usual restrictions for pickling apply: picklable enums must be defined in
the top level of a module, since unpickling requires them to be importable
from that module.

.. note::

    With pickle protocol version 4 (introduced in Python 3.4) it is possible
    to easily pickle enums nested in other classes.



Enum Functional API
-------------------

The ``Enum`` class is callable, providing the following functional API::

    >>> Animal = Enum('Animal', 'ant bee cat dog')
    >>> Animal
    <aenum 'Animal'>
    >>> Animal.ant
    <Animal.ant: 1>
    >>> Animal.ant.value
    1
    >>> list(Animal)
    [<Animal.ant: 1>, <Animal.bee: 2>, <Animal.cat: 3>, <Animal.dog: 4>]

The semantics of this API resemble ``namedtuple``. The first argument
of the call to ``Enum`` is the name of the enumeration.

The second argument is the *source* of enumeration member names.  It can be a
whitespace-separated string of names, a sequence of names, a sequence of
2-tuples with key/value pairs, or a mapping (e.g. dictionary) of names to
values.  The last two options enable assigning arbitrary values to
enumerations; the others auto-assign increasing integers starting with 1.  A
new class derived from ``Enum`` is returned.  In other words, the above
assignment to ``Animal`` is equivalent to::

    >>> class Animals(Enum):
    ...   ant = 1
    ...   bee = 2
    ...   cat = 3
    ...   dog = 4

Pickling enums created with the functional API can be tricky as frame stack
implementation details are used to try and figure out which module the
enumeration is being created in (e.g. it will fail if you use a utility
function in separate module, and also may not work on IronPython or Jython).
The solution is to specify the module name explicitly as follows::

    >>> Animals = Enum('Animals', 'ant bee cat dog', module=__name__)

Derived Enumerations
--------------------

IntEnum
^^^^^^^

A variation of ``Enum`` is provided which is also a subclass of
``int``.  Members of an ``IntEnum`` can be compared to integers;
by extension, integer enumerations of different types can also be compared
to each other::

    >>> from aenum import IntEnum
    >>> class Shape(IntEnum):
    ...   circle = 1
    ...   square = 2
    ...
    >>> class Request(IntEnum):
    ...   post = 1
    ...   get = 2
    ...
    >>> Shape == 1
    False
    >>> Shape.circle == 1
    True
    >>> Shape.circle == Request.post
    True

However, they still can't be compared to standard ``Enum`` enumerations::

    >>> class Shape(IntEnum):
    ...   circle = 1
    ...   square = 2
    ...
    >>> class Color(Enum):
    ...   red = 1
    ...   green = 2
    ...
    >>> Shape.circle == Color.red
    False

``IntEnum`` values behave like integers in other ways you'd expect::

    >>> int(Shape.circle)
    1
    >>> ['a', 'b', 'c'][Shape.circle]
    'b'
    >>> [i for i in range(Shape.square)]
    [0, 1]

For the vast majority of code, ``Enum`` is strongly recommended,
since ``IntEnum`` breaks some semantic promises of an enumeration (by
being comparable to integers, and thus by transitivity to other
unrelated enumerations).  It should be used only in special cases where
there's no other choice; for example, when integer constants are
replaced with enumerations and backwards compatibility is required with code
that still expects integers.


IntFlag
^^^^^^^

The next variation of ``Enum`` provided, ``IntFlag``, is also based
on ``int``.  The difference being ``IntFlag`` members can be combined
using the bitwise operators (&, \|, ^, ~) and the result is still an
``IntFlag`` member.  However, as the name implies, ``IntFlag``
members also subclass ``int`` and can be used wherever an ``int`` is
used.  Any operation on an ``IntFlag`` member besides the bit-wise
operations will lose the ``IntFlag`` membership.

Sample ``IntFlag`` class::

    >>> from aenum import IntFlag
    >>> class Perm(IntFlag):
    ...     _order_ = 'R W X'
    ...     R = 4
    ...     W = 2
    ...     X = 1
    ...
    >>> Perm.R | Perm.W
    <Perm.R|W: 6>
    >>> Perm.R + Perm.W
    6
    >>> RW = Perm.R | Perm.W
    >>> Perm.R in RW
    True

It is also possible to name the combinations::

    >>> class Perm(IntFlag):
    ...     _order_ = 'R W X'
    ...     R = 4
    ...     W = 2
    ...     X = 1
    ...     RWX = 7
    >>> Perm.RWX
    <Perm.RWX: 7>
    >>> ~Perm.RWX
    <Perm: 0>

Another important difference between ``IntFlag`` and ``Enum`` is that
if no flags are set (the value is 0), its boolean evaluation is ``False``::

    >>> Perm.R & Perm.X
    <Perm: 0>
    >>> bool(Perm.R & Perm.X)
    False

Because ``IntFlag`` members are also subclasses of ``int`` they can
be combined with them::

    >>> Perm.X | 4
    <Perm.R|X: 5>

If the result is not a ``Flag`` then, depending on the ``_boundary_`` setting,
an exception is raised (``STRICT``), the extra bits are lost (``CONFORM``), or
it reverts to an int (``EJECT``):

    >>> from aenum import STRICT, CONFORM, EJECT
    >>> Perm._boundary_ = STRICT
    >>> Perm.X | 8
    Traceback (most recent call last):
    ...
    ValueError: Perm: invalid value: 9
        given 0b0 1001
      allowed 0b0 0111

    >>> Perm._boundary_ = EJECT
    >>> Perm.X | 8
    9

    >>> Perm._boundary_ = CONFORM
    >>> Perm.X | 8
    <Perm.X: 1>


Flag
^^^^

The last variation is ``Flag``.  Like ``IntFlag``, ``Flag``
members can be combined using the bitwise operators (&, \|, ^, ~).  Unlike
``IntFlag``, they cannot be combined with, nor compared against, any
other ``Flag`` enumeration, nor ``int``.  While it is possible to
specify the values directly it is recommended to use ``auto`` as the
value and let ``Flag`` select an appropriate value.

Like ``IntFlag``, if a combination of ``Flag`` members results in no
flags being set, the boolean evaluation is ``False``::

    >>> from aenum import Flag, auto
    >>> class Color(Flag):
    ...     RED = auto()
    ...     BLUE = auto()
    ...     GREEN = auto()
    ...
    >>> Color.RED & Color.GREEN
    <Color: 0>
    >>> bool(Color.RED & Color.GREEN)
    False

Individual flags should have values that are powers of two (1, 2, 4, 8, ...),
while combinations of flags won't::

    --> class Color(Flag):
    ...     RED = auto()
    ...     BLUE = auto()
    ...     GREEN = auto()
    ...     WHITE = RED | BLUE | GREEN
    ...
    --> Color.WHITE
    <Color.WHITE: 7>

Giving a name to the "no flags set" condition does not change its boolean
value::

    >>> class Color(Flag):
    ...     BLACK = 0
    ...     RED = auto()
    ...     BLUE = auto()
    ...     GREEN = auto()
    ...
    >>> Color.BLACK
    <Color.BLACK: 0>
    >>> bool(Color.BLACK)
    False

Flags can be iterated over to retrieve the individual truthy flags in the value::

    >>> class Color(Flag):
    ...     _order_ = 'BLACK RED BLUE GREEN WHITE'
    ...     BLACK = 0
    ...     RED = auto()
    ...     BLUE = auto()
    ...     GREEN = auto()
    ...     WHITE = RED | BLUE | GREEN
    ...
    >>> list(Color.GREEN)
    [<Color.GREEN: 4>]
    >>> list(Color.WHITE)
    [<Color.RED: 1>, <Color.BLUE: 2>, <Color.GREEN: 4>]

.. note::

    For the majority of new code, ``Enum`` and ``Flag`` are strongly
    recommended, since ``IntEnum`` and ``IntFlag`` break some
    semantic promises of an enumeration (by being comparable to integers, and
    thus by transitivity to other unrelated enumerations).  ``IntEnum``
    and ``IntFlag`` should be used only in cases where ``Enum`` and
    ``Flag`` will not do; for example, when integer constants are replaced
    with enumerations, or for interoperability with other systems.


Others
^^^^^^

While ``IntEnum`` is part of the ``aenum`` module, it would be very
simple to implement independently::

    class MyIntEnum(int, Enum):
        pass

This demonstrates how similar derived enumerations can be defined; for example
a ``MyStrEnum`` that mixes in ``str`` instead of ``int``.

Some rules:

1. When subclassing ``Enum``, mix-in types must appear before
   ``Enum`` itself in the sequence of bases, as in the ``MyIntEnum``
   example above.
2. While ``Enum`` can have members of any type, once you mix in an
   additional type, all the members must have values of that type or be
   convertible into that type.  This restriction does not apply to mix-ins
   which only add methods and don't specify another data type.
3. When another data type is mixed in, the ``value`` attribute is *not the
   same* as the enum member itself, although it is equivalant and will compare
   equal.
4. %-style formatting:  ``%s`` and ``%r`` call ``Enum``'s ``__str__`` and
   ``__repr__`` respectively; other codes (such as ``%i`` or ``%h`` for
   MyIntEnum) treat the enum member as its mixed-in type.
5. ``str.__format__`` (or ``format``) will use the mixed-in
   type's ``__format__``.  If the ``Enum``'s ``str`` or ``repr`` is desired
   use the ``!s`` or ``!r`` ``str`` format codes.

.. note::

   If you override the ``__str__`` method, then it will be used to provide the
   string portion of the ``format()`` call.

.. note::

   Prior to Python 3.4 there is a bug in ``str``'s %-formatting: ``int``
   subclasses are printed as strings and not numbers when the ``%d``, ``%i``,
   or ``%u`` codes are used.


Extra Goodies
-------------

aenum supports a few extra techniques not found in the stdlib version.

enum
^^^^

If you have several items to initialize your ``Enum`` members with and
would like to use keyword arguments, the ``enum`` helper is for you::

    >>> from aenum import enum
    >>> class Presidents(Enum):
    ...     Washington = enum('George Washington', circa=1776, death=1797)
    ...     Jackson = enum('Andrew Jackson', circa=1830, death=1837)
    ...     Lincoln = enum('Abraham Lincoln', circa=1860, death=1865)
    ...
    >>> Presidents.Lincoln
    <Presidents.Lincoln: enum('Abraham Lincoln', circa=1860, death=1865)>

extend_enum
^^^^^^^^^^^

For those rare cases when you need to create your ``Enum`` in pieces, you
can use ``extend_enum`` to add new members after the initial creation
(the new member is returned)::

    >>> from aenum import extend_enum
    >>> class Color(Enum):
    ...     red = 1
    ...     green = 2
    ...     blue = 3
    ...
    >>> list(Color)
    [<Color.red: 1>, <Color.green: 2>, <Color.blue: 3>]
    >>> extend_enum(Color, 'opacity', 4)
    <Color.opacity: 4>
    >>> list(Color)
    [<Color.red: 1>, <Color.green: 2>, <Color.blue: 3>, <Color.opacity: 4>]
    >>> Color.opacity in Color
    True
    >>> Color.opacity.name == 'opacity'
    True
    >>> Color.opacity.value == 4
    True
    >>> Color(4)
    <Color.opacity: 4>
    >>> Color['opacity']
    <Color.opacity: 4>

    --> Color.__members__
    OrderedDict([
        ('red', <Color.red: 1>),
        ('green', <Color.green: 2>),
        ('blue', <Color.blue: 3>),
        ('opacity', <Color.opacity: 4>)
        ])

constant
^^^^^^^^

If you need to have some constant value in your ``Enum`` that isn't a member,
use ``constant``::

    >>> from aenum import constant
    >>> class Planet(Enum):
    ...     MERCURY = (3.303e+23, 2.4397e6)
    ...     EARTH   = (5.976e+24, 6.37814e6)
    ...     JUPITER = (1.9e+27,   7.1492e7)
    ...     URANUS  = (8.686e+25, 2.5559e7)
    ...     G = constant(6.67300E-11)
    ...     def __init__(self, mass, radius):
    ...         self.mass = mass       # in kilograms
    ...         self.radius = radius   # in meters
    ...     @property
    ...     def surface_gravity(self):
    ...         # universal gravitational constant  (m3 kg-1 s-2)
    ...         return self.G * self.mass / (self.radius * self.radius)
    ...
    >>> Planet.EARTH.value
    (5.976e+24, 6378140.0)
    >>> Planet.EARTH.surface_gravity
    9.802652743337129
    >>> Planet.G
    6.673e-11
    >>> Planet.G = 9
    Traceback (most recent call last):
    ...
    AttributeError: Planet: cannot rebind constant 'G'

skip
^^^^

If you need a standard attribute that is not converted into an ``Enum``
member, use ``skip``::

    >>> from aenum import skip
    >>> class Color(Enum):
    ...     red = 1
    ...     green = 2
    ...     blue = 3
    ...     opacity = skip(0.45)
    ...
    >>> Color.opacity
    0.45
    >>> Color.opacity = 0.77
    >>> Color.opacity
    0.77

start
^^^^^

``start`` can be used to turn on auto-numbering (useful for when you don't
care which numbers are assigned as long as they are consistent and in order)
The Python 3 version can look like this::

    >>> class Color(Enum, start=1):                # doctest: +SKIP
    ...     red, green, blue
    ...
    >>> Color.blue
    <Color.blue: 3>

This can also be done in Python 2, albeit not as elegantly (this also works in
Python 3)::

    >>> class Color(Enum):                         # doctest: +SKIP
    ...     _start_ = 1
    ...     red = auto()
    ...     green = auto()
    ...     blue = auto()
    ...
    >>> Color.blue
    <Color.blue: 3>

init
^^^^

If you need an ``__init__`` method that does nothing besides save its
arguments, ``init`` is for you::

    >>> class Planet(Enum, init='mass radius'):      # doctest: +SKIP
    ...     MERCURY = (3.303e+23, 2.4397e6)
    ...     EARTH   = (5.976e+24, 6.37814e6)
    ...     JUPITER = (1.9e+27,   7.1492e7)
    ...     URANUS  = (8.686e+25, 2.5559e7)
    ...     G = constant(6.67300E-11)
    ...     @property
    ...     def surface_gravity(self):
    ...         # universal gravitational constant  (m3 kg-1 s-2)
    ...         return self.G * self.mass / (self.radius * self.radius)
    ...
    >>> Planet.JUPITER.value
    (1.9e+27, 71492000.0)
    >>> Planet.JUPITER.mass
    1.9e+27

.. note::

   Just as with ``start`` above, in Python 2 you must put the keyword as a
   _sunder_ in the class body -- ``_init_ = 'mass radius'``.

init and missing values
^^^^^^^^^^^^^^^^^^^^^^^

If ``_init_`` calls for values that are not supplied, ``_generate_next_value_``
will be called in an effort to generate them.  Here is an example in Python 2::

    >>> from aenum import Enum
    >>> class SelectionEnum(Enum):
    ...     _init_ = 'db user'
    ...     def __new__(cls, *args, **kwds):
    ...         count = len(cls.__members__)
    ...         obj = object.__new__(cls)
    ...         obj._count = count
    ...         obj._value_ = args
    ...         return obj
    ...     @staticmethod
    ...     def _generate_next_value_(name, start, count, values, *args, **kwds):
    ...         return (name, ) + args
    ...
    >>> class NotificationType(SelectionEnum):
    ...     # usually, name is the same as db
    ...     # but not for blanks
    ...     blank = '', ''
    ...     C = 'Catalog'
    ...     S = 'Sheet'
    ...     B = 'Both'
    ...
    >>> NotificationType.blank
    <NotificationType.blank: ('', '')>
    >>> NotificationType.B
    <NotificationType.B: ('B', 'Both')>
    >>> NotificationType.B.db
    'B'
    >>> NotificationType.B.user
    'Both'

combining Flag with other data types
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Flag does support being combined with other data types.  To support this you
need to provide a ``_create_pseudo_member_values_`` method which will be called
with the members in a composite flag.  You may also need to provide a custom
``__new__`` method::

    >>> class AnsiFlag(str, Flag):
    ...     def __new__(cls, value, code):
    ...         str_value = '\x1b[%sm' % code
    ...         obj = str.__new__(cls, str_value)
    ...         obj._value_ = value
    ...         obj.code = code
    ...         return obj
    ...     @classmethod
    ...     def _create_pseudo_member_values_(cls, members, *values):
    ...         code = ';'.join(m.code for m in members)
    ...         return values + (code, )
    ...     _order_ = 'FG_Red FG_Green BG_Magenta BG_White'
    ...     FG_Red = '31'             # ESC [ 31 m      # red
    ...     FG_Green = '32'           # ESC [ 32 m      # green
    ...     BG_Magenta = '45'         # ESC [ 35 m      # magenta
    ...     BG_White = '47'           # ESC [ 37 m      # white
    ...
    >>> color = AnsiFlag.BG_White | AnsiFlag.FG_Red
    >>> repr(color)
    '<AnsiFlag.FG_Red|BG_White: 9>'
    >>> str.__repr__(color)
    "'\\x1b[31;47m'"

.. note::

   If you do not provide your own ``_create_pseudo_member_values_`` the flags
   may still combine, but may be missing functionality.


Decorators
----------

unique
^^^^^^

A ``class`` decorator specifically for enumerations.  It searches an
enumeration's ``__members__`` gathering any aliases it finds; if any are
found ``ValueError`` is raised with the details::

    >>> @unique
    ... class NoDupes(Enum):
    ...    first = 'one'
    ...    second = 'two'
    ...    third = 'two'
    Traceback (most recent call last):
    ...
    ValueError: duplicate names found in <aenum 'NoDupes'>: third -> second


Interesting examples
--------------------

While ``Enum`` and ``IntEnum`` are expected to cover the majority of
use-cases, they cannot cover them all.  Here are recipes for some different
types of enumerations that can be used directly (the first three are included
in the module), or as examples for creating one's own.


AutoNumber
^^^^^^^^^^

Avoids having to specify the value for each enumeration member::

    >>> class AutoNumber(Enum):
    ...     def __new__(cls):
    ...         value = len(cls.__members__) + 1
    ...         obj = object.__new__(cls)
    ...         obj._value_ = value
    ...         return obj
    ...
    >>> class Color(AutoNumber):
    ...     _order_ = "red green blue"  # only needed in 2.x
    ...     red = ()
    ...     green = ()
    ...     blue = ()
    ...
    >>> Color.green.value == 2
    True

.. note::

    The `__new__` method, if defined, is used during creation of the Enum
    members; it is then replaced by Enum's `__new__` which is used after
    class creation for lookup of existing members.  Due to the way Enums are
    supposed to behave, there is no way to customize Enum's `__new__` without
    modifying the class after it is created.


UniqueEnum
^^^^^^^^^^

Raises an error if a duplicate member name is found instead of creating an
alias::

    >>> class UniqueEnum(Enum):
    ...     def __init__(self, *args):
    ...         cls = self.__class__
    ...         if any(self.value == e.value for e in cls):
    ...             a = self.name
    ...             e = cls(self.value).name
    ...             raise ValueError(
    ...                     "aliases not allowed in UniqueEnum:  %r --> %r"
    ...                     % (a, e))
    ...
    >>> class Color(UniqueEnum):
    ...     _order_ = 'red green blue'
    ...     red = 1
    ...     green = 2
    ...     blue = 3
    ...     grene = 2
    Traceback (most recent call last):
    ...
    ValueError: aliases not allowed in UniqueEnum:  'grene' --> 'green'


OrderedEnum
^^^^^^^^^^^

An ordered enumeration that is not based on ``IntEnum`` and so maintains
the normal ``Enum`` invariants (such as not being comparable to other
enumerations)::

    >>> class OrderedEnum(Enum):
    ...     def __ge__(self, other):
    ...         if self.__class__ is other.__class__:
    ...             return self._value_ >= other._value_
    ...         return NotImplemented
    ...     def __gt__(self, other):
    ...         if self.__class__ is other.__class__:
    ...             return self._value_ > other._value_
    ...         return NotImplemented
    ...     def __le__(self, other):
    ...         if self.__class__ is other.__class__:
    ...             return self._value_ <= other._value_
    ...         return NotImplemented
    ...     def __lt__(self, other):
    ...         if self.__class__ is other.__class__:
    ...             return self._value_ < other._value_
    ...         return NotImplemented
    ...
    >>> class Grade(OrderedEnum):
    ...     __ordered__ = 'A B C D F'
    ...     A = 5
    ...     B = 4
    ...     C = 3
    ...     D = 2
    ...     F = 1
    ...
    >>> Grade.C < Grade.A
    True


Planet
^^^^^^

If ``__new__`` or ``__init__`` is defined the value of the enum member
will be passed to those methods::

    >>> class Planet(Enum):
    ...     MERCURY = (3.303e+23, 2.4397e6)
    ...     VENUS   = (4.869e+24, 6.0518e6)
    ...     EARTH   = (5.976e+24, 6.37814e6)
    ...     MARS    = (6.421e+23, 3.3972e6)
    ...     JUPITER = (1.9e+27,   7.1492e7)
    ...     SATURN  = (5.688e+26, 6.0268e7)
    ...     URANUS  = (8.686e+25, 2.5559e7)
    ...     NEPTUNE = (1.024e+26, 2.4746e7)
    ...     def __init__(self, mass, radius):
    ...         self.mass = mass       # in kilograms
    ...         self.radius = radius   # in meters
    ...     @property
    ...     def surface_gravity(self):
    ...         # universal gravitational constant  (m3 kg-1 s-2)
    ...         G = 6.67300E-11
    ...         return G * self.mass / (self.radius * self.radius)
    ...
    >>> Planet.EARTH.value
    (5.976e+24, 6378140.0)
    >>> Planet.EARTH.surface_gravity
    9.802652743337129


How are Enums different?
------------------------

Enums have a custom metaclass that affects many aspects of both derived Enum
classes and their instances (members).


Enum Classes
^^^^^^^^^^^^

The ``EnumMeta`` metaclass is responsible for providing the
``__contains__``, ``__dir__``, ``__iter__`` and other methods that
allow one to do things with an ``Enum`` class that fail on a typical
class, such as ``list(Color)`` or ``some_var in Color``.  ``EnumMeta`` is
responsible for ensuring that various other methods on the final ``Enum``
class are correct (such as ``__new__``, ``__getnewargs__``,
``__str__`` and ``__repr__``).

.. note::

    ``__dir__`` is not changed in the Python 2 line as it messes up some
    of the decorators included in the stdlib.


Enum Members (aka instances)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^

The most interesting thing about Enum members is that they are singletons.
``EnumMeta`` creates them all while it is creating the ``Enum``
class itself, and then puts a custom ``__new__`` in place to ensure
that no new ones are ever instantiated by returning only the existing
member instances.


Finer Points
^^^^^^^^^^^^

``Enum`` members are instances of an ``Enum`` class, but are not
accessible as `EnumClass.member1.member2`.
(changed in version 1.1.1 to be accessible)
(changed in version 2.2.4 to be inaccessible)::

    >>> class FieldTypes(Enum):
    ...     name = 1
    ...     value = 2
    ...     size = 3
    ...
    >>> FieldTypes.size.value
    3
    >>> FieldTypes.size
    <FieldTypes.size: 3>
    >>> FieldTypes.value.size
    Traceback (most recent call last):
    ...
    AttributeError: <aenum 'FieldTypes'> member has no attribute 'size'

The ``__members__`` attribute is only available on the class.


``__members__`` is always an ``OrderedDict``, with the order being the
definition order in Python 3.x or the order in ``_order_`` in Python 2.7;
if no ``_order_`` was specified in Python 2.7 then the order of
``__members__`` is either increasing value or alphabetically by name.

If you give your ``Enum`` subclass extra methods, like the `Planet`_
class above, those methods will show up in a `dir` of the member,
but not of the class (in Python 3.x)::

    --> dir(Planet)
    ['EARTH', 'JUPITER', 'MARS', 'MERCURY', 'NEPTUNE', 'SATURN', 'URANUS',
     'VENUS', '__class__', '__doc__', '__members__', '__module__']
    --> dir(Planet.EARTH)
    ['__class__', '__doc__', '__module__', 'name', 'surface_gravity', 'value']

A ``__new__`` method will only be used for the creation of the
``Enum`` members -- after that it is replaced.  This means if you wish to
change how ``Enum`` members are looked up you either have to write a
helper function or a ``classmethod``.

.. note::

    If you create your own ``__new__`` you should set the ``_value_`` in it;
    if you do not, aenum will try to, but will raise a ``TypeError`` if it
    cannot.

If the stdlib ``enum`` is available (Python 3.4+ and it hasn't been shadowed
by, for example, ``enum34``) then aenum will be a subclass of it.

To use the ``AddValue``, ``MultiValue``, ``NoAlias``, and ``Unique`` flags
in Py2 or Py2/Py3 codebases, use ``_settings_ = ...`` in the class body.

To use ``init`` in Py2 or Py2/Py3 codebases use ``_init_`` in the class body.

To use ``start`` in Py2 or Py2/Py3 codebases use ``_start_`` in the class body.

When creating class bodies dynamically, put any variables you need to use into
``_ignore_``::

    >>> from datetime import timedelta
    >>> from aenum import NoAlias
    >>> class Period(timedelta, Enum):
    ...     '''
    ...     different lengths of time
    ...     '''
    ...     _init_ = 'value period'
    ...     _settings_ = NoAlias
    ...     _ignore_ = 'Period i'
    ...     Period = vars()
    ...     for i in range(31):
    ...         Period['day_%d' % i] = i, 'day'
    ...     for i in range(15):
    ...         Period['week_%d' % i] = i*7, 'week'
    ...
    >>> hasattr(Period, '_ignore_')
    False
    >>> hasattr(Period, 'Period')
    False
    >>> hasattr(Period, 'i')
    False

The name listed in ``_ignore_``, as well as ``_ignore_`` itself, will not be
present in the final enumeration as neither attributes nor members.

.. note::

    except for __dunder__ attributes/methods, all _sunder_ attributes must
    be before any thing else in the class body

.. note::

    all _sunder_ attributes that affect member creation are only looked up in
    the last ``Enum`` class listed in the class header


Creating NamedTuples
--------------------

Simple
^^^^^^

The most common way to create a new NamedTuple will be via the functional API::

    >>> from aenum import NamedTuple
    >>> Book = NamedTuple('Book', 'title author genre', module=__name__)

This creates a ``NamedTuple`` called ``Book`` that will always contain three
items, each of which is also addressable as ``title``, ``author``, or ``genre``.

``Book`` instances can be created using positional or keyword argements or a
mixture of the two::

    >>> b1 = Book('Lord of the Rings', 'J.R.R. Tolkien', 'fantasy')
    >>> b2 = Book(title='Jhereg', author='Steven Brust', genre='fantasy')
    >>> b3 = Book('Empire', 'Orson Scott Card', genre='scifi')

If too few or too many arguments are used a ``TypeError`` will be raised::

    >>> b4 = Book('Hidden Empire')
    Traceback (most recent call last):
    ...
    TypeError: values not provided for field(s): author, genre
    >>> b5 = Book(genre='business')
    Traceback (most recent call last):
    ...
    TypeError: values not provided for field(s): title, author

As a ``class`` the above ``Book`` ``NamedTuple`` would look like::

    >>> class Book(NamedTuple):
    ...     title = 0
    ...     author = 1
    ...     genre = 2
    ...

For compatibility with the stdlib ``namedtuple``, NamedTuple also has the
``_asdict``, ``_make``, and ``_replace`` methods, and the ``_fields``
attribute, which all function similarly::

    >>> class Point(NamedTuple):
    ...     x = 0, 'horizontal coordinate', 1
    ...     y = 1, 'vertical coordinate', -1
    ...
    >>> class Color(NamedTuple):
    ...     r = 0, 'red component', 11
    ...     g = 1, 'green component', 29
    ...     b = 2, 'blue component', 37
    ...
    >>> Pixel = NamedTuple('Pixel', Point+Color, module=__name__)
    >>> pixel = Pixel(99, -101, 255, 128, 0)

    >>> pixel._asdict()
    OrderedDict([('x', 99), ('y', -101), ('r', 255), ('g', 128), ('b', 0)])

    >>> Point._make((4, 5))
    Point(x=4, y=5)

    >>> purple = Color(127, 0, 127)
    >>> mid_gray = purple._replace(g=127)
    >>> mid_gray
    Color(r=127, g=127, b=127)

    >>> pixel._fields
    ['x', 'y', 'r', 'g', 'b']

    >>> Pixel._fields
    ['x', 'y', 'r', 'g', 'b']


Advanced
^^^^^^^^

The simple method of creating ``NamedTuples`` requires always specifying all
possible arguments when creating instances; failure to do so will raise
exceptions::

    >>> class Point(NamedTuple):
    ...     x = 0
    ...     y = 1
    ...
    >>> Point()
    Traceback (most recent call last):
    ...
    TypeError: values not provided for field(s): x, y
    >>> Point(1)
    Traceback (most recent call last):
    ...
    TypeError: values not provided for field(s): y
    >>> Point(y=2)
    Traceback (most recent call last):
    ...
    TypeError: values not provided for field(s): x

However, it is possible to specify both docstrings and default values when
creating a ``NamedTuple`` using the class method::

    >>> class Point(NamedTuple):
    ...     x = 0, 'horizontal coordinate', 0
    ...     y = 1, 'vertical coordinate', 0
    ...
    >>> Point()
    Point(x=0, y=0)
    >>> Point(1)
    Point(x=1, y=0)
    >>> Point(y=2)
    Point(x=0, y=2)

It is also possible to create ``NamedTuples`` that only have named attributes
for certain fields; any fields without names can still be accessed by index::

    >>> class Person(NamedTuple):
    ...     fullname = 2
    ...     phone = 5
    ...
    >>> p = Person('Ethan', 'Furman', 'Ethan Furman',
    ...            'ethan at stoneleaf dot us',
    ...            'ethan.furman', '999.555.1212')
    >>> p
    Person('Ethan', 'Furman', 'Ethan Furman', 'ethan at stoneleaf dot us',
           'ethan.furman', '999.555.1212')
    >>> p.fullname
    'Ethan Furman'
    >>> p.phone
    '999.555.1212'
    >>> p[0]
    'Ethan'

In the above example the last named field was also the last field possible; in
those cases where you don't need to have the last possible field named, you can
provide a ``_size_`` of ``TupleSize.minimum`` to declare that more fields are
okay::

    >>> from aenum import TupleSize
    >>> class Person(NamedTuple):
    ...     _size_ = TupleSize.minimum
    ...     first = 0
    ...     last = 1
    ...

or, optionally if using Python 3::

    >>> class Person(NamedTuple, size=TupleSize.minimum):      # doctest: +SKIP
    ...     first = 0
    ...     last = 1

and in use::

    >>> Person('Ethan', 'Furman')
    Person(first='Ethan', last='Furman')

    >>> Person('Ethan', 'Furman', 'ethan.furman')
    Person('Ethan', 'Furman', 'ethan.furman')

    >>> Person('Ethan', 'Furman', 'ethan.furman', 'yay Python!')
    Person('Ethan', 'Furman', 'ethan.furman', 'yay Python!')

    >>> Person('Ethan')
    Traceback (most recent call last):
    ...
    TypeError: values not provided for field(s): last

Also, for those cases where even named fields may not be present, you can
specify ``TupleSize.variable``::

    >>> class Person(NamedTuple):
    ...     _size_ = TupleSize.variable
    ...     first = 0
    ...     last = 1
    ...

    >>> Person('Ethan')
    Person('Ethan')

    >>> Person(last='Furman')
    Traceback (most recent call last):
    ...
    TypeError: values not provided for field(s): first

Creating new ``NamedTuples`` from existing ``NamedTuples`` is simple::

    >>> Point = NamedTuple('Point', 'x y')
    >>> Color = NamedTuple('Color', 'r g b')
    >>> Pixel = NamedTuple('Pixel', Point+Color, module=__name__)
    >>> Pixel
    <NamedTuple 'Pixel'>

The existing fields in the bases classes are renumbered to fit the new class,
but keep their doc strings and default values.  If you use standard
subclassing::

    >>> Point = NamedTuple('Point', 'x y')
    >>> class Pixel(Point):
    ...     r = 2, 'red component', 11
    ...     g = 3, 'green component', 29
    ...     b = 4, 'blue component', 37
    ...
    >>> Pixel.__fields__
    ['x', 'y', 'r', 'g', 'b']

You must manage the numbering yourself.


Creating NamedConstants
-----------------------

A ``NamedConstant`` class is created much like an ``Enum``::

    >>> from aenum import NamedConstant
    >>> class Konstant(NamedConstant):
    ...     PI = 3.14159
    ...     TAU = 2 * PI

    >>> Konstant.PI
    <Konstant.PI: 3.14159>

    >> print(Konstant.PI)
    3.14159

    >>> Konstant.PI = 'apple'
    Traceback (most recent call last):
    ...
    AttributeError: cannot rebind constant <Konstant.PI>

    >>> del Konstant.PI
    Traceback (most recent call last):
    ...
    AttributeError: cannot delete constant <Konstant.PI>